New methodology for calibration of hydrodynamic models in curved open-channel flow
DOI:
https://doi.org/10.17533/udea.redin.n83a11Keywords:
curved channel, hydrodynamic model, design of experiments, lack of fit, calibration of numerical modelsAbstract
This paper evaluates a new methodology for calibration of hydrodynamic models based on the theory of statistical design of experiments. An Eulerian-Eulerian hydrodynamic homogeneous model, integrated by the commercial software CFX Ansys Inc., is used to perform the numerical experiments. For the screening step, the fractional factorial experimental design 27-2 was used, followed by a Draper-Lin design of second order to find the optimum point in the calibration. A new method is introduced to generate the level of points to the center and to carry out the test of lack of fit. In this work, we develop a validated methodology for the calibration of deterministic hydrodynamic models with several factors, suggesting a second-order regression model for forecasting the optimum point of the simulations, with acceptable accuracy in predicting the response variable.
Downloads
References
H. Gutiérrez and R. de la Vara, Análisis y diseño de experimentos, 2nd ed. Mexico City, Mexico: McGraw-Hill, 2008.
D. C. Montgomery, Diseño y análisis de experimentos, 2nd ed. Mexico City, Mexico: Limusa Wiley, 2004.
S. U. Quiroz, “Diseño de experimentos en simulación,” M.S. thesis, University of the Andes, Mérida, Venezuela, 1992.
J. A. Barra, A. Ferreira, F. Leal, and F. A. Silva, “Application of design of experiments on the simulation of a process in an automotive industry,” in 39th Winter Simulation Conf. (WSC): 40 Years! The Best is Yet to Come, Washington, D.C., USA, 2007, pp. 1601–1609.
K. P. Bowman, J. Sacks, and Y. F. Chang, “Design and analysis of numerical experiments,” J. Atmospheric Sciences, vol. 50, no. 9, pp. 1267–1278, 1993.
J. C. Salazar and A. Baena, “Análisis y diseño de experimentos aplicados a estudios de simulación,” DYNA, vol. 76, no. 159, pp. 249-257, 2009.
R. G. Sargent, “Verification and validation of simulation models,” in 39th Winter Simulation Conf. (WSC): 40 Years! The Best is Yet to Come, Washington, D.C., USA, 2007, pp. 124-137.
D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis, 5th ed. New Jersey, USA: John Wiley & Sons, 2012.
G. Joglekar, J. H. Schuenemeyer, and V. LaRiccia, “Lack-of-fit testing when replicates are not available,” The American Statistician, vol. 43, no. 3, pp. 135-143, 1989.
Ansys Inc., ANSYS CFX-Pre User's Guide, 2013. [Online]. Available: http://148.204.81.206/Ansys/150/ANSYS%20CFX-Pre%20Users%20Guide.pdf. Accessed on: Sep. 13, 2016.
R. Igreja, “Numerical simulation of the filling and curing stages in reaction injection moulding, using CFX,” M.S. thesis, University of Aveiro, Aveiro, Portugal, 2007.
S. Han, A. S. Ramamurthy, and P. M. Biron, “Characteristics of flow around open channel 90˚ bends with vanes,” Journal of Irrigation and Drainage Engineering, vol. 137, no. 10, pp. 668-676, 2011.
W. van Balen “Curved open-channel flows a numerical study,” Ph.D. dissertation, Delft University of Technology, Delft, Netherlands, 2010.
A. van Sabben, “Sharp bend flow: Comparison of Delft3D-FLOW with LES and measurements for sharp bends,” M.S. thesis, Delft University of Technology, Delft, Netherlands, 2010.
M. M. Ahmadi, S. A. Ayyoubzadeh, M. Montazeri, and J. Samani, “A 2D Numerical Depth-averaged Model for Unsteady Flow in Open Channel Bends,” Journal of Agricultural Science and Technology, vol. 11, no. 4, pp. 457-468, 2009.
C. G. Song, I. W. Seo, and Y. D. Kim, “Analysis of secondary current effect in the modeling of shallow flow in open channels,” Advances in Water Resources, vol. 41, pp. 29-48, 2012.
M. Tritthart and D. Gutknecht, “Three-Dimensional Simulation of Free-Surface Flows Using Polyhedral Finite Volumes,” Engineering Application of Computational Fluid Mechanics, vol. 1, no 1, pp. 1-14, 2007.
M. Montazeri, R. Sadat, G. Hashemi, and M. Ghaeini, “3D numerical simulation of supercritical flow in bends of channel,” in International Conference on Mechanical, Automotive and Materials Engineering (ICMAME), Dubai, United Arab Emirates, 2012, pp. 167-171.
B. W. Matthews, C. Fletcher, and A. C. Partridge, “Computational simulation of fluid and dilute particulate flows on spiral concentrators,” Applied Mathematical Modelling, vol. 22, no. 12, pp. 965-979, 1998.
C. J. Willmott, “On the validation of models,” Phys. Geogr., vol. 2, no. 2, pp. 184-194, 1981.
C. J. Willmott, “Some comments on evaluation of model performance,” Bull. American Meteorol. Soc., vol. 63, no. 11, pp. 1309-1313, 1982.
M. H. Hsu, A. Y. Kuo, J. T. Kuo, and W. C. Liu, “Procedure to calibrate and verify numerical models of estuarine hydrodynamics,” Journal of Hydraulic Engineering, vol. 125, no. 2, pp. 166-182, 1999.
P. Krause, D. P. Boyle, and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Advances in Geosciences, vol. 5, pp. 89-97, 2005.
S. Alexandris, R. Stricevic, and S. Petkovic, “Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula,” European Water, vol. 21, no. 22, pp. 17-28, 2008.
C. Palacio, G. Francisco, and U. García, “Calibración de un modelo hidrodinámico 2D para la bahía de Cartagena,” DYNA, vol. 77, no. 164, pp. 152-166, 2010.
F. García, C. Palacio, and U. García, “Generación de mallas no estructuradas para la implementación de modelos numéricos,” DYNA, vol. 76, no. 157, pp. 17-25, 2009.
F. A. Fragala and N. Obregón, “Estimación de la recarga media anual en los acuíferos de la sabana de Bogotá,” Ingeniería y Universidad, vol. 15, no. 1, pp. 145-169, 2011.
R. Ghobadian and K. Mohammadi, “Simulation of subcritical flow pattern in 180° uniform and convergent open-channel bends using SSIIM 3-D model,” Water Science and Engineering, vol. 4, no. 3, pp. 270-283, 2011.
C. F. Velásquez and F. M. Toro, “Calibración y validación de un modelo en computador para simular el golpe de ariete en redes cerradas,” Avances en Recursos Hidráulicos, no. 13, pp. 23-36, 2006.
A. Baghlani, “On various dispersion models for simulating flow at channel bends,” IJSTC Transactions of Civil Engineering, vol. 37, no. 2, pp. 285-299, 2013.
A. Gholami, A. A. Akhtari, Y. Minatour, H Bonakdari, and A. A. Javadi, “Experimental and Numerical Study on Velocity Fields and Water Surface Profile in a Strongly-Curved 90° Open Channel Bend,” Engineering Applications of Computational Fluid Mechanics, vol. 8, no. 3, pp. 447-461, 2014.
A. Gholami, H. Bonakdari, A. H. Zaji, and A. A. Akhtari, “Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks,” Engineering Applications of Computational Fluid Mechanics, vol. 9, no. 1, pp. 355-369, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.