New methodology for calibration of hydrodynamic models in curved open-channel flow

Authors

DOI:

https://doi.org/10.17533/udea.redin.n83a11

Keywords:

curved channel, hydrodynamic model, design of experiments, lack of fit, calibration of numerical models

Abstract

This paper evaluates a new methodology for calibration of hydrodynamic models based on the theory of statistical design of experiments. An Eulerian-Eulerian hydrodynamic homogeneous model, integrated by the commercial software CFX Ansys Inc., is used to perform the numerical experiments. For the screening step, the fractional factorial experimental design 27-2 was used, followed by a Draper-Lin design of second order to find the optimum point in the calibration. A new method is introduced to generate the level of points to the center and to carry out the test of lack of fit. In this work, we develop a validated methodology for the calibration of deterministic hydrodynamic models with several factors, suggesting a second-order regression model for forecasting the optimum point of the simulations, with acceptable accuracy in predicting the response variable.

|Abstract
= 345 veces | PDF
= 192 veces|

Downloads

Download data is not yet available.

Author Biographies

Hernán Javier Gómez-Zambrano, University of Nariño

Associate Professor, Department of Civil Engineering, Faculty of Engineering. Research Group on Risks, Threats and the Environment (GRAMA).

Víctor Ignacio López-Ríos, National University of Colombia

Associate Professor. Research Group in Statistics, School of Statistics, Faculty of Sciences.

Francisco Mauricio Toro-Botero, National University of Colombia

Professor. Postgraduate Research Group on Use of Hydraulic Resources (PARH), Department of Geosciences and Environment, Faculty of Mines.

References

H. Gutiérrez and R. de la Vara, Análisis y diseño de experimentos, 2nd ed. Mexico City, Mexico: McGraw-Hill, 2008.

D. C. Montgomery, Diseño y análisis de experimentos, 2nd ed. Mexico City, Mexico: Limusa Wiley, 2004.

S. U. Quiroz, “Diseño de experimentos en simulación,” M.S. thesis, University of the Andes, Mérida, Venezuela, 1992.

J. A. Barra, A. Ferreira, F. Leal, and F. A. Silva, “Application of design of experiments on the simulation of a process in an automotive industry,” in 39th Winter Simulation Conf. (WSC): 40 Years! The Best is Yet to Come, Washington, D.C., USA, 2007, pp. 1601–1609.

K. P. Bowman, J. Sacks, and Y. F. Chang, “Design and analysis of numerical experiments,” J. Atmospheric Sciences, vol. 50, no. 9, pp. 1267–1278, 1993.

J. C. Salazar and A. Baena, “Análisis y diseño de experimentos aplicados a estudios de simulación,” DYNA, vol. 76, no. 159, pp. 249-257, 2009.

R. G. Sargent, “Verification and validation of simulation models,” in 39th Winter Simulation Conf. (WSC): 40 Years! The Best is Yet to Come, Washington, D.C., USA, 2007, pp. 124-137.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis, 5th ed. New Jersey, USA: John Wiley & Sons, 2012.

G. Joglekar, J. H. Schuenemeyer, and V. LaRiccia, “Lack-of-fit testing when replicates are not available,” The American Statistician, vol. 43, no. 3, pp. 135-143, 1989.

Ansys Inc., ANSYS CFX-Pre User's Guide, 2013. [Online]. Available: http://148.204.81.206/Ansys/150/ANSYS%20CFX-Pre%20Users%20Guide.pdf. Accessed on: Sep. 13, 2016.

R. Igreja, “Numerical simulation of the filling and curing stages in reaction injection moulding, using CFX,” M.S. thesis, University of Aveiro, Aveiro, Portugal, 2007.

S. Han, A. S. Ramamurthy, and P. M. Biron, “Characteristics of flow around open channel 90˚ bends with vanes,” Journal of Irrigation and Drainage Engineering, vol. 137, no. 10, pp. 668-676, 2011.

W. van Balen “Curved open-channel flows a numerical study,” Ph.D. dissertation, Delft University of Technology, Delft, Netherlands, 2010.

A. van Sabben, “Sharp bend flow: Comparison of Delft3D-FLOW with LES and measurements for sharp bends,” M.S. thesis, Delft University of Technology, Delft, Netherlands, 2010.

M. M. Ahmadi, S. A. Ayyoubzadeh, M. Montazeri, and J. Samani, “A 2D Numerical Depth-averaged Model for Unsteady Flow in Open Channel Bends,” Journal of Agricultural Science and Technology, vol. 11, no. 4, pp. 457-468, 2009.

C. G. Song, I. W. Seo, and Y. D. Kim, “Analysis of secondary current effect in the modeling of shallow flow in open channels,” Advances in Water Resources, vol. 41, pp. 29-48, 2012.

M. Tritthart and D. Gutknecht, “Three-Dimensional Simulation of Free-Surface Flows Using Polyhedral Finite Volumes,” Engineering Application of Computational Fluid Mechanics, vol. 1, no 1, pp. 1-14, 2007.

M. Montazeri, R. Sadat, G. Hashemi, and M. Ghaeini, “3D numerical simulation of supercritical flow in bends of channel,” in International Conference on Mechanical, Automotive and Materials Engineering (ICMAME), Dubai, United Arab Emirates, 2012, pp. 167-171.

B. W. Matthews, C. Fletcher, and A. C. Partridge, “Computational simulation of fluid and dilute particulate flows on spiral concentrators,” Applied Mathematical Modelling, vol. 22, no. 12, pp. 965-979, 1998.

C. J. Willmott, “On the validation of models,” Phys. Geogr., vol. 2, no. 2, pp. 184-194, 1981.

C. J. Willmott, “Some comments on evaluation of model performance,” Bull. American Meteorol. Soc., vol. 63, no. 11, pp. 1309-1313, 1982.

M. H. Hsu, A. Y. Kuo, J. T. Kuo, and W. C. Liu, “Procedure to calibrate and verify numerical models of estuarine hydrodynamics,” Journal of Hydraulic Engineering, vol. 125, no. 2, pp. 166-182, 1999.

P. Krause, D. P. Boyle, and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Advances in Geosciences, vol. 5, pp. 89-97, 2005.

S. Alexandris, R. Stricevic, and S. Petkovic, “Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula,” European Water, vol. 21, no. 22, pp. 17-28, 2008.

C. Palacio, G. Francisco, and U. García, “Calibración de un modelo hidrodinámico 2D para la bahía de Cartagena,” DYNA, vol. 77, no. 164, pp. 152-166, 2010.

F. García, C. Palacio, and U. García, “Generación de mallas no estructuradas para la implementación de modelos numéricos,” DYNA, vol. 76, no. 157, pp. 17-25, 2009.

F. A. Fragala and N. Obregón, “Estimación de la recarga media anual en los acuíferos de la sabana de Bogotá,” Ingeniería y Universidad, vol. 15, no. 1, pp. 145-169, 2011.

R. Ghobadian and K. Mohammadi, “Simulation of subcritical flow pattern in 180° uniform and convergent open-channel bends using SSIIM 3-D model,” Water Science and Engineering, vol. 4, no. 3, pp. 270-283, 2011.

C. F. Velásquez and F. M. Toro, “Calibración y validación de un modelo en computador para simular el golpe de ariete en redes cerradas,” Avances en Recursos Hidráulicos, no. 13, pp. 23-36, 2006.

A. Baghlani, “On various dispersion models for simulating flow at channel bends,” IJSTC Transactions of Civil Engineering, vol. 37, no. 2, pp. 285-299, 2013.

A. Gholami, A. A. Akhtari, Y. Minatour, H Bonakdari, and A. A. Javadi, “Experimental and Numerical Study on Velocity Fields and Water Surface Profile in a Strongly-Curved 90° Open Channel Bend,” Engineering Applications of Computational Fluid Mechanics, vol. 8, no. 3, pp. 447-461, 2014.

A. Gholami, H. Bonakdari, A. H. Zaji, and A. A. Akhtari, “Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks,” Engineering Applications of Computational Fluid Mechanics, vol. 9, no. 1, pp. 355-369, 2015.

Downloads

Published

2017-06-26

How to Cite

Gómez-Zambrano, H. J., López-Ríos, V. I., & Toro-Botero, F. M. (2017). New methodology for calibration of hydrodynamic models in curved open-channel flow. Revista Facultad De Ingeniería Universidad De Antioquia, (83), 82–91. https://doi.org/10.17533/udea.redin.n83a11