Characteristics and applications of the equations of state in chemical engineering. Recent advances. Part 2

Authors

  • José Cobas Centro de Química Farmacéutica
  • Eladio Pardillo

DOI:

https://doi.org/10.17533/udea.redin.327310

Keywords:

equations of state, group contribution methods, chemical theory equations of state

Abstract

A review dealing with equations of state and its application to process chemical engineering is presented. This section describes equations of state based on chemical theory and combination EOS-Group Contribution Methods. Other equations of state are presented in the first part of this review.

|Abstract
= 247 veces | PDF
= 119 veces|

Downloads

Download data is not yet available.

References

Heidemann, R. A. y J. M. Prausnitz. “A Van der Waals type equation of state for fluids with associating molecules”. En: Proceedings from the National Academy of Science. Vol. 73. No. 1. 1976. pp. 1.773-1.776.

Ikonomu, G. D. y M. D. Donohue. “Thermodynamics of hydrogen bonded molecules: The associated perturbed anisotropic chain theory”. En: AIChE Journal. Vol. 32. No. 1. 1986. pp. 716-1.724. DOI: https://doi.org/10.1002/aic.690321015

Ikonomu, G. D. y M. D. Donohue. “Extension of the associated perturbed anisotropic chain theory to mixtures with more than one associating component”. En: Fluid Phase Equilibria. Vol. 39. No. 1. 1987. pp. 129-159. DOI: https://doi.org/10.1016/0378-3812(88)85002-7

Ikonomu, G. D. y M. D. Donohue. “Compact: A simple equation of state for associated molecules”. En: Fluid Phase Equilibria. Vol. 33. No. 1. 1988. pp. 61-90. DOI: https://doi.org/10.1016/0378-3812(87)87004-8

Lee, M. J. y K. C. Chao. “Augmented BACK equation of state for polar fluids”. En: AIChE Journal. Vol. 34. No. 1. 1988. pp. 825-833. DOI: https://doi.org/10.1002/aic.690340512

Anderko, A. “A simple equation of state incorporating association”. En: Fluid Phase Equilibria. Vol. 45. No. 1. 1989. pp. 39-67. DOI: https://doi.org/10.1016/0378-3812(89)80166-9

Lambert, J. D. “Association in polar vapors and binary vapor mixtures”. En: Discussion from Faraday Society. Vol. 15. No. 1. 1983. pp. 226-232. DOI: https://doi.org/10.1039/df9531500226

Yu, J. M. et al. “A three parameter cubic equation of state for asymmetric mixture density calculations”. En: Fluid Phase Equilibria. Vol. 34. 1987. pp. 1-19. DOI: https://doi.org/10.1016/0378-3812(87)85047-1

Sandler, S. I. y B. I. Lee. “Equations of State”. En: Model for Thermodynamycs and Phase Equilibria Calculations. Nueva York. Marcel Dekker Inc. 1994.

Anderko, A. y S. Malanowski. “Calculation of solid-liquid, liquid-liquid and vapor-liquid equilibria by means of an equation of state incorporating association”. En: Fluid Phase Equilibria. Vol. 48. No. 1. 1989. pp. 223-241. DOI: https://doi.org/10.1016/0378-3812(89)80204-3

Wenzel, H. y E. Krop. “Phase equilibrium by equation of state: A short-cut meted allowing for association”. En: Fluid Phase Equilibria. Vol. 59. No. 1. 1990. pp. 147-169. DOI: https://doi.org/10.1016/0378-3812(90)85032-6

Marrero, J. y E. Pardillo. “Estimation of pure compounds properties using group-interaction contributions”. En: AIChE Journal. Vol. 45. No. 1. 1999. pp. 615-622. DOI: https://doi.org/10.1002/aic.690450318

Schwartzenruber, J. y H. Renon. “Extension of UNIFAC to high pressures and temperatures by use of a cubic equation of state”. En: Industrial Engineering and Chemistry Research. Vol. 28. 1989. pp. 1.049-1.055. DOI: https://doi.org/10.1021/ie00091a026

Georgeton, G. H. y A. S. Teja. “A simple group contribution equation of state for fluid mixtures”. En: Chemical Engineering Science. Vol. 30. 1989. pp. 1.589-1.595.

Kim, C. H. et al. “Local composition model for chainlike molecules: A new simplified version of the perturbed chain theory”. En: AIChE Journal. Vol. 32. No. 1. 1986. pp. 1.726-1.734. DOI: https://doi.org/10.1002/aic.690321016

Huron, M. J. y J. Vidal. “New mixing rules in simple equation of state for representing vapor-liquid equilibria of strongly non-ideal mixtures”. En: Fluid Phase Equilibria. Vol. 3. No. 1. 1979. pp. 255-271. DOI: https://doi.org/10.1016/0378-3812(79)80001-1

Tochigi, K. et al. “Prediction of high-pressure vapor-liquid equilibria using the Soave-Redlich-Kwong group contribution method”. En: Industrial Engineering and Chemistry Research. Vol. 29. 1990. pp. 2.142-2.149. DOI: https://doi.org/10.1021/ie00106a027

Pandit, A. y R. P. Singh. “Vapor-liquid equilibria calculations for polar mixtures with mixing rule using ASOG group contribution method”. En: Fluid Phase Equilibria. Vol. 33. No. 1. 1987. pp. 1-12. DOI: https://doi.org/10.1016/0378-3812(87)87001-2

Mollerup, J. “A note on the derivation of mixing rules from excess Gibbs free energy models”. En: Fluid Phase Equilibria. Vol. 25. No. 1. 1986. pp. 323-327. DOI: https://doi.org/10.1016/0378-3812(86)80007-3

Gupte, P. A. et al. “A new group contribution equation of state for vapor-liquid equilibria”. En: Industrial Chemical Engineering Fundamentals. Vol. 25. No. 1. 1986. pp. 636-645. DOI: https://doi.org/10.1021/i100024a027

Michelsen, M. L. “A method for incorporating excess Gibbs free energy models in equations of state”. En: Fluid Phase Equilibria. Vol. 60. No. 1. 1990. pp. 47-58. DOI: https://doi.org/10.1016/0378-3812(90)85042-9

Michelsen, M. L. “A modified Huron-Vidal mixing rule for cubic equations of state”. En: Fluid Phase Equilibria. Vol. 60. No. 1. 1990. pp. 213-219. DOI: https://doi.org/10.1016/0378-3812(90)85053-D

Heideman, R. A. y S. L. Kokal. “Combining excess Gibbs free energy models and equations of state”. En: Fluid Phase Equilibria. Vol. 56. No. 1. 1990. pp. 17-37. DOI: https://doi.org/10.1016/0378-3812(90)85090-W

Fredenslund, A. y J. M. Sorensen. “Group Contribution Estimation Methods” En: Model for Thermodynamycs and Phase Equilibria Calculations. Nueva York. Marcel Dekker Inc. 1994.

Holderbaum, T. y J. Gmehling. “A group contribution equation of state based on UNIFAC”. En: Fluid Phase Equilibria. Vol. 70. No. 1. 1991. pp. 251-265. DOI: https://doi.org/10.1016/0378-3812(91)85038-V

Fischer, K. y J. Gmehling. “Further development, sta-tus and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities”. En: Fluid Phase Equilibria. Vol. 121. No. 1. 1996. pp. 185-206. DOI: https://doi.org/10.1016/0378-3812(95)02792-0

Gmehling, J. et al. “Further development of the PSRK model for the prediction of gas solubilities and vapor-liquid equilibria at low and high pressures ÍI”. En: Fluid Phase Equilibria. Vol. 141. No. 1. 1997. pp. 113-127. DOI: https://doi.org/10.1016/S0378-3812(97)00204-5

Li, J. et al. “Prediction of vapor-liquid equilibria for asymmetric systems at low and high pressures with the PSRK model”. En: Fluid Phase Equilibria. Vol. 143. No. 1. 1998. pp. 71-82. DOI: https://doi.org/10.1016/S0378-3812(98)00206-4

Horstmann, S. et al. “PSRK group contribution equation of state: revision and extension III”. En: Fluid Phase Equilibria. Vol. 167. No. 1. 2000. pp. 173- 186. DOI: https://doi.org/10.1016/S0378-3812(99)00333-7

Hansen, H. K. et al. “Vapour-Liquid Equilibria by UNIFAC Group Contribution. 5. Revision and Extension”. En: Industrial Engineering and Chemistry Research. Vol. 30. No. 1. 1991. pp. 2.352-2.355. DOI: https://doi.org/10.1021/ie00058a017

Wong, D. S. y S. I. Sandler. “A theoretically correct mixing rule for cubic equation of state”. En: AIChE Journal. Vol. 38. 1992. pp. 671-680. DOI: https://doi.org/10.1002/aic.690380505

Stryjek, R. y J. H. Vera. “An improved Peng-Robinson equation of state for accurate vapour-liquid equilibrium calculations”. En: The Canadian Journal of Chemical Engineering. Vol. 64. No. 1. 1986. pp. 334-340. DOI: https://doi.org/10.1002/cjce.5450640225

Wong, D. S. et al. “A equation of state mixing rule for nonideal mixtures using avalaible activity coefficient model parameters and which allows extrapolation over large ranges of temperature and pressure”. En: Industrial Engineering and Chemistry Research. Vol. 31. No. 1. 1992. pp. 2.033-2.039. DOI: https://doi.org/10.1021/ie00008a027

Bokouvalas, C. et al. “Prediction of vapor-liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC and the t-mPR equation of state”. En: Fluid Phase Equilibria. Vol. 92. No. 1. 1994. pp. 75-106. DOI: https://doi.org/10.1016/0378-3812(94)80043-X

Zhong, C. y H. Masuoka. “Rules for accurate prediction of vapor-liquid equilibria of gas/large alkane syatems using SRK equation of state combined with UNIFAC”. En: Journal of Chemical Engineering of Japan. Vol. 29. 1996. pp. 315-322. DOI: https://doi.org/10.1252/jcej.29.315

Zhong, C. et al. “Vapor-liquid equilibria of gas/large alkane syatems using group contribution equation of state”. En: Journal of Chemical Engineering of Japan. Vol. 30. 1997. pp. 1.133-1.137. DOI: https://doi.org/10.1252/jcej.30.1133

Zhong, C. y H. Masuoka. “A new mixing rule for cubic equation of state and its application to polymer solutions”. En: Fluid Phase Equilibria. Vol. 123. 1996. pp. 59-69. DOI: https://doi.org/10.1016/S0378-3812(96)90011-4

Zhong, C. y H. Masuoka. “An EOS/GE type mixing rule for perturbed hard-sphere equation of state and its application to the calculation of solid solubility in supercritical carbon dioxide”. En: Fluid Phase Equilibria. Vol. 141. 1997. pp. 13-23 DOI: https://doi.org/10.1016/S0378-3812(97)00189-1

Zhong, C. y H. Masuoka. “Prediction of excess enthalpies at low and high pressures using modified MHV1 mixing rule”. En: Fluid Phase Equilibria. Vol. 158-160. 1999. pp. 283-291. DOI: https://doi.org/10.1016/S0378-3812(99)00145-4

Saghafi, A. y M. Moshfeghian. “Evaluation of vapor-liquid equilibrium of ethane binary systems using UNIQUAC-based mixing rules and its extension to multicomponent systems”. En: Fluid Phase Equilibria. Vol. 169. No. 1. 2000. pp. 31-47. DOI: https://doi.org/10.1016/S0378-3812(99)00343-X

Downloads

Published

2003-03-06

How to Cite

Cobas, J., & Pardillo, E. (2003). Characteristics and applications of the equations of state in chemical engineering. Recent advances. Part 2. Revista Facultad De Ingeniería Universidad De Antioquia, (30), 49–60. https://doi.org/10.17533/udea.redin.327310