Evaluation of high rate sedimentation lab-scale tank performance in drinking water treatment
DOI:
https://doi.org/10.17533/udea.redin.n90a02Keywords:
floc blanket, AguaClara, upwards flow velocity, plate settlersAbstract
The Cornell University AguaClara program researches ways to improve the process of potable water treatment at low cost and no energy dependent. A High Rate Sedimentation (HRS) process that uses upward flow and less area than traditional tanks was investigated. The objective was to analyze parameters affecting HRS tank performance including velocity, density of the floc blanket and location of plate settlers in a laboratory scale HRS tank. Different velocities were set during the experiment, and the resulting performance of the floc blanket was evaluated through continuous turbidity measurements. Results demonstrated that the lab-scale tank allows the creation of a floc blanket and is a versatile design with constraints of visibility and accessibility. In addition, performance of the sedimentation tank improves at lower up flow velocities; however, the study suggests that plate settlers at the top of the tank stabilized the floc blanket at higher velocities, as a consequence of denser floc blankets created by the plates.
Downloads
References
M. W. Hurst, “Evaluation of parameters affecting steady-state floc blanket performance,” M.S. thesis, Cornell University, Ithaca, New York, 2010.
M. J. Rhodes, Introduction to Particle Technology. England, UK: John Wiley & Sons, 2008.
C. R. Schulz and D. A. Okun, Surface Water Treatment for Communities in Developing Countries. New York, U.S.A: John Wiley & Sons, 1984.
G. Tchobanoglous and E. D. Schroeder, Water Quality. Boston, U.S.A.: Addison-Wesley Publishing Company Inc, 1987.
R. S. Al-Kizwini, “Improvement of sedimentation process using inclined plates,” Mesopotamia Environmental Journal, vol. 2, no. 1, pp. 100–114, 2015.
G. Zhu, Y. Zhang, J. Ren, T. Qiu, and T. Wang, “Flow simulation and analysis in a vertical-flow sedimentation tank,” Energy Procedia, vol. 16, pp. 197–202, 2012.
R. Gregory, R. J. M. Head, and N. J. D. Graham, “The relevance of blanket solids concentration in understanding the performance of floc blanket clarifiers in water treatment,” in Chemical Water and Wastewater Treatment IV, Edinburgh, Scotland, 1996, pp. 17–29.
M. Hurst, M. Weber, and L. W. Lion, “Image analysis of floc blanket dynamics: Investigation of floc blanket thickening, growth, and steady state,” Journal of environmental engineering, vol. 140, no. 4, Apr. 2014.
O. Anyene and et al., “High rate sedimentation- floc blanket,” Research group Civil and Environmental Engineering, Cornell University, Ithaca, New York, U.S.A, Tech. Rep., Jun. 2016.
Y. Yu, L. Zhu, A. Cheng, and S. Lok, “High rate sedimentation plate settlers,” Cornell University, Ithaca, New York, Tech. Rep., Jun. 2016.
A. I. Salem, “On fluid dynamics of lamella separator modelling and process optimization,” M.S. thesis, Universität Bremen, Bremen, Germany, 2012.
R. Tarpagkou and A. Pantokratoras, “The influence of lamellar settler in sedimentation tanks for potable water treatment — a computational fluid dynamic study,” Powder Technology, vol. 268, pp. 139–149, Dec. 2014.
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista Facultad de Ingeniería Universidad de Antioquia
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.