Experimental and numerical evaluation of resilience and toughness in AISI 1015 steel welded plates

Authors

  • Pavel Michel Zaldivar-Almaguer University of Holguin
  • Roberto Andrés Estrada-Cingualbres University of Holguin
  • Roberto Pérez-Rodríguez University of Holguín
  • Arturo Molina-Gutiérrez Technological Institute of Monterrey

DOI:

https://doi.org/10.17533/udea.redin.n90a09

Keywords:

metallurgy, numerical analysis, test

Abstract

The mechanical characterization of the engineering materials is always a topic of interest to engineers and researchers. The objective of this work is to study the butt welded joint resilience and toughness by means of the tensile test and the numerical simulation. The specimens were fabricated by welding two plates of AISI 1015 steel with an E6013 electrode. An algorithm of the numerical integration based on the trapezoid method that allowed calculating the resilience and toughness as the area under the stress - strain curve was implemented. The algorithm was validated by comparing the numerical results of the resilience with those obtained by the analytical method. The results show that the resilience and the toughness values computed with the experimental stress - strain curve, they have correspondence with the same values calculated with the numerical simulation.

|Abstract
= 471 veces | HTML
= 0 veces| | PDF
= 240 veces|

Downloads

Download data is not yet available.

Author Biographies

Pavel Michel Zaldivar-Almaguer, University of Holguin

Professor and researcher. Faculty of Engineering. CAD/CAM Study Center.

Roberto Andrés Estrada-Cingualbres, University of Holguin

Professor and researcher. Faculty of Engineering. CAD/CAM Study Center.

Roberto Pérez-Rodríguez, University of Holguín

Professor and researcher. Faculty of Engineering. CAD/CAM Study Center.

Arturo Molina-Gutiérrez, Technological Institute of Monterrey

Professor, researcher and Vice-rector for Research and Technology Transfer.

References

A. H. Noguera and R. Miró, “Efecto de la tenacidad del asfalto en la resistencia a fatiga de las mezclas asfálticas,” Rev. ing. constr., vol. 26, no. 2, pp. 224–239, Aug 2011.

T. E. García, C. Rodríguez, F. J. Belzunce, I. Peñuelas, and I. I. Cuesta, “Estimation of the fracture toughness of structural steels by means of the ctod evaluation on notched small punch specimens,” Procedia Mater. Sci., vol. 3, pp. 861–866, 2014.

D. Gutiérrez, L. Pérez, A. Lara, D. Casellas, and J. Prado, “Evaluation of essential work of fracture in a dual phase high strength steel sheet,” Rev. Metal., vol. 49, no. 1, pp. 45–54, 2013.

A. Hassouni, A. Plumier, and A. Cherrabia, “Experimental and numerical analysis of the strain-rate effect on fully welded connections,” J. Const. Steel Res., vol. 67, no. 3, pp. 533–546, Mar 2011.

L. Tong, X. Huang, F. Zhou, and Y. Chen, “Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints,” J. Const. Steel Res., vol. 119, pp. 98–112, Mar 2016.

S. Zhang, Q. Xia, and N. Yuan., “Mechanical characterization of flat specimens in tensile test and numerical simulation,” J Mech Sci Technol., vol. 26, no. 2, pp. 401–409, Feb 2012.

D. Tawfik, P. J. Mutton, and W. K. Chiua, “Experimental and numerical investigations: Alleviating tensile residual stresses in flash-butt welds by localised rapid post-weld heat treatment,” J Mat. Pro. Tec., vol. 196, no. 1-3, pp. 279–291, Jan 2008.

M. Islam, A. Buijk, M. Rais-Rohani, and K. Motoyama, “Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures,” Finite Elem. Anal. Des., vol. 84, pp. 54–64, Jul 2014.

L. Chin-Hyung, C. Kyong-Ho, and V. Nguyeno, “Finite element modelling of residual stress relaxation in steel butt welds under cyclic loading,” Eng. Struct., vol. 103, pp. 63–71, Jul 2015.

D. Wang, H. Zhang, B. Gong, and C. Deng, “Residual stress effects on fatigue behaviour of welded t-joint: A finite fracture mechanics approach,” Mater. Des., vol. 91, pp. 211–217, Feb 2016.

N. R. Masoudi, M. Shariati, and K. Farhangdoost, “3d finite element simulation of residual stresses in uic60 rails during the quenching process,” J Mat. Pro. Tec., vol. 21, pp. 13–13, 2017.

P. Thai-Hoan and K. Seung-Eock, “Determination of mechanical properties in sm490 steel weld zone using nanoindentation and fe analysis,” J. Const. Steel Res., vol. 114, pp. 314–324, Nov 2015.

Y.-P. Yang and B. P. Athreya, “An improved plasticity-based distortion analysis method for large welded structures,” Journal of Materials Engineering and Performance, vol. 22, no. 5, pp. 1233–1241, May 2013.

K. Yooil, O. Jung-Sik, and J. Seock-Hee, “Novel hot spot stress calculations for welded joints using 3d solid finite elements,” Mar. Struct., vol. 44, p. 1–18, Dec 2015.

J. A. Pozo, P. E. Quintero, A. Cruz, and E. Díaz, “Gtaw welding thermal analysis on aisi 316l steel plate using the finite elements method,” Soldagem Insp, vol. 16, no. 3, pp. 256–264, Jul 2011.

A. V. Damale and K. N. Nandurkar, “3-d coupled fe analysis and experimental validation of restrained welding to control angular distortion,” Journal of The Institution of Engineers (India): Series C, vol. 93, no. 4, pp. 365–371, Oct 2012.

C. Lee, S. Chiew, and J. Jiang, “3d residual stress modelling of welded high strength steel plate-to-plate joints,” J. Const. Steel Res., vol. 84, pp. 94–104, May 2013.

G. Fua, M. Lourenco, M. Duan, and S. Estefen, “Effect of boundary conditions on residual stress and distortion in t-joint welds,” J. Const. Steel Res., vol. 102, pp. 121–135, Nov 2014.

L. E. Murr. (2025) Handbook of materials structures, properties, processing and performance. Switzerland. [Online]. Available: http://www.springer.com/us/book/9783319018140

A. Parrish, Mechanical Engineers Reference, 11th ed. Norwich, ENG: Butterworths, 1973.

Soldadura. Ensayo de tracción y resiliencia sobre probetas del metal de aportación. Requisitos generales, Norma Cubana NC: 08-13, Oficina Nacional de Normalización, La Habana, Cuba, 1986.

P. Almaguer, R. Estrada, and R. Pérez, “Evaluación por el método de los elementos finitos de la influencia de las tensiones residuales en la fatiga de uniones soldadas,” Ingeniería Mecánica, vol. 19, no. 1, p. 40–48, 2016.

R. Hibbeler, Mechanics of Materials, 9th ed. Boston, USA: Prentice Hall, 2014.

M. Kutz, Mechanical Engineers’ Handbook, 4th ed. New Jersey, USA: John Wiley & Sons Inc, 2015.

J. Weideman, “Numerical integration of periodic functions: A few examples,” American Mathematical Monthly, vol. 109, pp. 21–36, 01 2002.

J. Hollomon. (1945) Tensile deformation. [Online]. Available: https://es.scribd.com/document/255631757/Tensile-Deformation-John-Hollomon

Downloads

Published

2019-01-31

How to Cite

Zaldivar-Almaguer, P. M., Estrada-Cingualbres, R. A., Pérez-Rodríguez, R., & Molina-Gutiérrez, A. (2019). Experimental and numerical evaluation of resilience and toughness in AISI 1015 steel welded plates. Revista Facultad De Ingeniería Universidad De Antioquia, (90), 76–86. https://doi.org/10.17533/udea.redin.n90a09