Improving the mechanical properties of commercial feldspathic dental porcelain by addition of Alumina-Zirconia
DOI:
https://doi.org/10.17533/udea.redin.n91a11Keywords:
dental ceramics, reinforcing agent, fracture, Hertzian contactAbstract
Dental ceramics made from Yttria stabilized tetragonal Zirconia polycrystalline (Y-TZP) with feldspathic porcelain veneers have similar mechanical and aesthetic response to natural tooth. However, cases of early failure, such as chipping or fracture in the veneering have been reported after short periods of use. The present study evaluated the feldspathic porcelain (VITA-VM9) with addition of 0.5 and 2.5 wt% Alumina-Zirconia as reinforcing agents. Hardness, fracture toughness, contact resistance and color variations were evaluated finding better mechanical performance on the new formulations.
Downloads
References
Z. R. Zhou and J. Zheng, “Tribology of dental materials: a review,” J. Phys. D. Appl. Phys., vol. 41, no. 1, p. 113001, 2008.
K. J. Anusavice, “Degradability of dental ceramics,” Adv. Dent. Res., vol. 6, pp. 82–89, Sep. 1992.
J. L. Ong, D. W. Farley, and B. K. Norling, “Quantification of leucite concentration using x-ray diffraction,” Dental Materials, vol. 16, no. 1, pp. 20–25, Jan. 2000.
M. Peumans, B. V. Meerbeek, P. Lambrechts, and G. Vanherle, “Porcelain veneers: a review of the literature,” Journal of Dentistry, vol. 28, no. 3, pp. 163–177, Jan. 2000.
M. Balkenhol and et al., “Bonding to zirconia ceramic: The effect of cold plasma treatment and 4-meta,” Clinical Plasma Medicine, vol. 5-6, pp. 8–13, Jun. 2017.
I. S. Medeiros, L. A. Luz, H. N. Yoshimura, P. F. Cesar, and A. C. Hernandes, “Al2o3/gdalo3 fiber for dental porcelain reinforcement,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 2, no. 5, pp. 471–477, Oct. 2009.
J. W. Kim, M. N. Janal, J. H. Kim, and Y. Zhang, “Damage maps of veneered zirconia under simulated mastication,” J. Dent. Res., vol. 87, no. 12, pp. 1127––1132, Jan. 2008.
M. V. Swain, “Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures,” Acta Bioma terialia, vol. 5, no. 5, pp. 1668–1677, Jun. 2009.
R. Sgura, I. Studart, P. F. Cesar, A. Almeida, and A. C. Hernandes, “Porcelain monolayers and porcelain/alumina bilayers reinforced by al2o3/gdalo3 fibers,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 5, no. 1, pp. 110–115, Jan. 2012.
M. J. Tholey, M. V. Swain, and N. Thiel, “Sem observations of porcelain y-tzp interface,” Dental Materials, vol. 25, no. 7, pp. 857 – 862, Jul. 2009.
R. L. P. Santos and et al., “On the mechanical properties and microstructure of zirconia-reinforced feldspar-based porcelain,” Ceramics International, vol. 42, no. 12, pp. 14 214–14 221, Sep. 2016.
F. Martínez, G. Pradíes, M. Suárez, and B. Rivera, “Cerámicas dentales: clasificación y criterios de selección,” RCOE, vol. 12, no. 4, pp. 253–263, Oct. 2017.
P. H. Kumar, V. Singh, P. Kumar, G. Yadav, and R. K. Chaturvedi, “Effect of al2o3 on leucite based bioactive glass ceramic composite for dental veneering,” Ceram. Int., vol. 42, no. 2, Part B, pp. 3591–3597, Oct. 2016.
VITAVM9 Instrucciones de uso, Versión 09.11, VITA, 2011.
P. C. Guess and et al., “Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling,” Dental Materials, vol. 24, no. 11, pp. 1556–1567, Nov. 2008.
C. Rivera, D. Arola, and A. Ossa, “Indentation damage and crack repair in human enamel.” J. Mech. Behav. Biomed. Mater., vol. 21, pp. 178–84, May 2013.
I. M. Peterson, A. Pajares, B. R. Lawn, V. P. Thompson, and E. D. Rekow, “Mechanical characterization of dental ceramics by hertzian contacts,” J. Dent. Res., vol. 77, no. 4, pp. 589–602, Apr. 1998.
A. O. Rueda, J. Seuba, M. Anglada, and E. Jiménez, “Tomography of indentation cracks in feldspathic dental porcelain on zirconia,” Dental Materials, vol. 29, no. 3, pp. 348–356, Mar. 2013.
A. O. Rueda, M. Anglada, and E. Jimenez, “Contact fatigue of veneer feldspathic porcelain on dental zirconia,” Dent. Mater., vol. 31, no. 3, pp. 217–224, Mar. 2015.
ISO 11664-4: 2008 (E) / CIE S 014-4 / E: 2007 - Colorimetry - Part 4: CIE 1976 L * A * B * Color Space, ISO 11664-4, 2008.
K. Haas, G. Azhar, D. J. Wood, K. Moharamzadeh, and R. van Noort, “The effects of different opacifiers on the translucency of experimental dental composite resins,” Dental Materials, vol. 33, no. 8, pp. e310–e316, Aug. 2017.
B. Uludag, A. Usumez, V. Sahin, K. Eser, and E. Ercoban, “The effect of ceramic thickness and number of firings on the color of ceramic systems: An in vitro study,” J. Prost. Dent., vol. 97, no. 1, pp. 25–31., Jan. 2007.
I. Sarikaya and A. U. Güler, “Effects of different surface treatments on the color stability of various dental porcelains,” Journal of Dental Sciences, vol. 6, no. 2, pp. 65–71, Jun. 2011.
P. F. Cesar, H. N. Yoshimura, W. G. Miranda, and C. Y. Okada, “Correlation between fracture toughness and leucite content in dental porcelains,” Journal of Dentistry, vol. 33, no. 9, pp. 721–729, Oct. 2005.
M. Kon, K. Ishikawa, and N. Kuwayam, “Effects of zirconia addition on fracture toughness and bending strength of dental porcelains,” Dent. Mater. J., vol. 9, no. 2, pp. 181–92, Dec. 1990.
M. K. et al., “Synthesis and properties of dental zirconia–leucite composites,” Bull. Mater. Sci., vol. 33, no. 6, pp. 713–717, Dec. 2010.
V. Frith, R. O. Heckroodt, and K. H. Schueller, “Mechanical properties of zircon-feldspar porcelains,” CFI Ceramic Forum International, vol. 64, no. 10, pp. 379–383, 1987.
C. A. Rivera, A. Ossa, and D. Arola, “Fragilidad y comportamiento mecánico del esmalte dental,” Rev. Ing. Biomédica, vol. 6, no. 12, pp. 10–16, 2012.
J. W. Kim, J. H. Kim, and Y. Zhang, “Sliding contact fatigue damage in layered ceramic structures,” J. Dent. Res., vol. 86, no. 11, pp. 1046– 50, Nov. 2007.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.