GHG diffuse emissions estimation, and energy security to ENSO using MERRA-2 for largely hydroelectricity-based system

Authors

  • Yohen Cuellar National Open and Distance University
  • J. S. Chiriví Salomón National Open and Distance University https://orcid.org/0000-0003-2072-7955
  • Marco Guevara National University of Colombia
  • Harold David Cuadros Tejeda National Open and Distance University

DOI:

https://doi.org/10.17533/udea.redin.n91a07

Keywords:

energy supply, energy development, emission factor, air pollution, hydropower

Abstract

In Colombia, hydropower share was 70 % of the total installed capacity and more than 50 % of the monthly generation share in 2015, which coincided with the strongest El Niño Southern Oscillation (ENSO) phenomenon reported in the region. ENSO has been recognized as an influential climate pattern on meteorological variables. The generation via hydropower implies the construction of dams and water reservoirs; these flooded areas generate an important amount of Green House Gases (GHG). In this regard, the main aim of this research was to quantify the diffusing emissions of CO2 and CH4 in the flooded areas of the main hydroelectric power generation facilities in Colombia. GHG emissions were calculated by the implementation of an IPCC methodology. The obtained results show that more than 1,042,500 t CO2-Eq (i.e. CO2 and CH4) are emitted in Colombia per year from this source, representing 4.4 % of the total GHG emissions in the country. As the second aim, the vulnerability of Colombia’s energy independence, in terms of power supply to ENSO and climate change was analyzed using the MERRA-2 dataset from NASA, for the years between 2010 and 2017.

|Abstract
= 635 veces | HTML
= 0 veces| | PDF
= 291 veces|

Downloads

Download data is not yet available.

Author Biographies

Yohen Cuellar, National Open and Distance University

Chemical Engineer and Magister in Environmental Engineering. Conservation, Bioprospecting and Sustainable Development (COBIDES), School of Agricultural, Livestock and Environmental Sciences (ECAPMA).

J. S. Chiriví Salomón, National Open and Distance University

Professor and Researcher. Conservation, Bioprospecting and Sustainable Development (COBIDES), School of Agricultural, Livestock and Environmental Sciences (ECAPMA).

Marco Guevara, National University of Colombia

Chemical Engineer and Master in Chemical Engineering. GICA-Air Quality Research Group, Department of Chemical and Environmental Engineering.

Harold David Cuadros Tejeda, National Open and Distance University

Environmental engineer. Conservation, Bioprospecting and Sustainable Development (COBIDES), School of Agricultural, Livestock and Environmental Sciences (ECAPMA).

References

(2018) Sistema de generación de energía de EPM. EPM. Accessed Jun. 05, 2018. [Online]. Available: https://bit.ly/2IGlzFl

Unidad de planeación Minero Energética (UPME). (2015) Plan de expansión de referencia generación-transmisión 2014-2028. [Online]. Available: https://bit.ly/2Wb6pd1

(2015) Boletín estadístico de minas y energía 2010-2015. Unidad de planeación Minero Energética (UPME). Accessed Jun. 10, 2018. [Online]. Available: https://bit.ly/2V3vXvW

(2016) World energy resources: Hydropower. World Energy Council (WEC). Accessed Jan. 15, 2018. [Online]. Available: https://bit.ly/2dQ1pH3

P. Muñoz and et al ., “Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ,” Quat. Sci. Rev. , vol. 155, pp. 159–178, Jan. 2017.

D. Weisser, “A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies,” Energy , vol. 32, no. 9, pp. 1543–1559, Sep. 2007.

A. Tremblay, M. Lambert, and L. Gagnon, “Do hydroelectric reservoirs emit greenhouse gases?” Environ. Manage. , vol. 33, pp. S509–S517, Jul. 2014.

A. Briones, J. Uche, and A. Martínez, “Accounting for GHG net reservoir emissions of hydropower in Ecuador,” Renew. Energy , vol. 112, pp. 209–221, Nov. 2017.

A. Palau, M. Alonso, and D. Corregidor, “Análisis del ciclo de carbono en embalses y su posible efecto en el cambio climático. Aplicación al embalse de Susqueda (río Ter, NE España),” Ingeniería del Agua , vol. 17, no. 3, pp. 247–255, Sep. 2010.

A. Palau and M. Alonso. (2008, Nov.) Embalses y cambio climático. Endesa. [Online]. Available: https://bit.ly/2HPuH9n

M. A. Paucar, “Estudio de emisiones de metano producidas por embalses en centrales hidroeléctricas en Ecuador,” M.S. thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2014.

V. Martínez and O. L. Castillo, “The political ecology of hydropower: Social justice and conflict in Colombian hydroelectricity development,” Energy Res. Soc. Sci. , vol. 22, pp. 69–78, Dec. 2016.

S. Zapata, M. Castaneda, E. Garces, C. J. Franco, and I. Dyner, “Assessing security of supply in a largely hydroelectricity-based system: The Colombian case,” Energy , vol. 156, pp. 444–457, Aug. 2018.

K. Mohammadi and N. Goudarzi, “Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California,” Renew. Energy , pp. 190–200, May 2018.

K. S. Boodoo, M. E. McClain, J. J. Vélez, and O. L. Ocampo, “Impacts of implementation of Colombian environmental flow methodologies on the flow regime and hydropower production of the Chinchiná River, Colombia,” Ecohydrol. Hydrobiol. , vol. 14, no. 4, pp. 267–284, 2014.

M. Detto, S. J. Wright, O. Calderón, and H. C. Muller, “Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation,” Nat. Commun. , vol. 9, no. 1, pp. 1–8, Mar. 2018.

B. Ayarzagüena, S. Ineson, N. J. Dunstone, M. P. Baldwin, and A. A. Scaife, “Intraseasonal effects of El Niño-Southern Oscillation on North Atlantic climate,” J. Clim. , vol. 31, no. 21, pp. 1–35, Aug. 2018.

J. S. Mantilla, L. I. Moncada, N. E. Matta, and P. H. Adler, “Distribution of black flies (Diptera: Simuliidae) along an elevational gradient in the Andes Mountains of Colombia during the El Niño Southern Oscillation,” Acta Trop. , vol. 183, pp. 162–172, 2018.

L. C. Pérez and P. Molnar, “Sea surface temperatures in the Eastern Equatorial Pacific and surface temperatures in the Eastern Cordillera of Colombia during El Niño: Implications for pliocene conditions,” Paleoceanography , vol. 32, no. 11, pp. 1309–1314, Nov. 2017.

S. C. Smith and D. Ubilava, “The El Niño Southern Oscillation and economic growth in the developing world,” Glob. Environ. Chang. , vol. 45, pp. 151–164, Jul. 2017.

Apéndice 2 Enfoque posible para estimar las emisiones de CO 2 provenientes de las tierras convertidas en tierras permanentemente inundadas : Base para su futuro desarrollo metodológico , Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero, Grupo Intergubernamental de Expertos sobre el Cambio Climático, Hayama, Japan, 2006.

Apéndice 3 Emisiones de CH 4 provenientes de tierras inundadas: Base para su futuro desarrollo metodológico , Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero, Grupo Intergubernamental de Expertos sobre el Cambio Climático, Hayama, Japan, 2006.

Giovanni. NASA. Accessed Oct. 16, 2017. [Online]. Available: https://go.nasa.gov/2YsJRqp

M. A. Guevara, A. Guevara, J. F. Méndez, and L. C. Belalcázar, “Spatial and temporal assessment of particulate matter using AOD data from MODIS and surface measurements in the ambient air of Colombia,” Asian J. Atmos. Environ. , vol. 12, no. 2, pp. 165–177, Jul. 2018.

PARATEC, “Capacidad efectiva por tipo de generación,” PARATEC, Medellín, Colombia, Tech. Rep., Mar. 2017.

Merra-2. NASA. Accessed Sep. 03, 2018. [Online]. Available: https://go.nasa.gov/2TGAAr5

(2016) Earth observatory. NASA. Accessed Jun. 20, 2018. [Online]. Available: https://go.nasa.gov/2iELmOe

S. Kang and J. B. Ahn, “Global energy and water balances in the latest reanalyses,” Asia-Pacific J. Atmos. Sci. , vol. 51, no. 4, pp. 293–302, Nov. 2015.

F. Almeida and et al ., “How much is enough? an integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil,” Renew. Sustain. Energy Rev. , vol. 53, pp. 1132–1136, Jan. 2016.

UPME-base de datos de embalses. UPME. Accessed Apr. 28, 2018. [Online]. Available: https://bit.ly/2uzFjRg

(2015) Informe de oferta y generación. XM S.A. E.S.P. [Online]. Available: https://bit.ly/2DkQH8j

J. C. Jenkins, H. D. Gonzo, and S. Ogle, “Other lands,” Institute for Global Environmental Strategies, Hayama, Japan, Tech. Rep., 2006.

J. L. da Silva and M. A. Vasconcelos, “Amazon and the expansion of hydropower in Brazil: Vulnerability, impacts and possibilities for adaptation to global climate change,” Renew. Sustain. Energy Rev. , vol. 15, no. 6, pp. 3165–3177, Aug. 2011.

Unidad de planeación Minero Energética (UPME). (2013, Mar.) Proyección de demanda de energía eléctrica en colombia. [Online]. Available: https://bit.ly/2UFRfjL

J. S. Riaño, M. A. Guevara, and L. C. Belalcázar, “CFD modeling and evaluation of a bi-stable micro-diverter valve,” Ciencia, Tecnol. y Futur. , vol. 8, no. 1, pp. 77–84, 2018.

M. A. Guevara, J. D. Reyes, and F. A. Guevara, “Diseño y evaluación de un ciclón para separación de sólidos y gas de una corriente con un flujo multifásico empleando dinámica de fluidos computacional,” Rev. VirtualPro , vol. 166, pp. 1–30, 2015.

C. Gorlé, J. van Beeck, P. Rambaud, and G. V. Tendeloo, “CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer,” Atmos. Environ. , vol. 43, no. 3, pp. 673–681, Jan. 2009.

F. Li, E. S. Lee, J. Liu, and Y. Zhu, “Predicting self-pollution inside school buses using a CFD and multi-zone coupled model,” Atmos. Environ. , vol. 107, pp. 16–23, Apr. 2015.

Y. Tominaga and T. Stathopoulos, “CFD modeling of pollution dispersion in building array: Evaluation of turbulent scalar flux modeling in RANS model using LES results,” J. Wind Eng. Ind. Aerodyn. , vol. 104–106, pp. 484–491, May 2012.

M. A. Guevara and L. C. Belalcazar, “NGL supersonic separator: modeling, improvement, and validation and adjustment of k-epsilon RNG modified for swirl flow turbulence model,” Revista Facultad de Ingeniería Universidad de Antioquia , no. 82, pp. 82–93, Feb. 2017.

Downloads

Published

2019-04-22

How to Cite

Cuellar, Y., Chiriví Salomón, J. S., Guevara, M., & Cuadros Tejeda, H. D. (2019). GHG diffuse emissions estimation, and energy security to ENSO using MERRA-2 for largely hydroelectricity-based system. Revista Facultad De Ingeniería Universidad De Antioquia, (91), 70–82. https://doi.org/10.17533/udea.redin.n91a07