Conceptual design of an alignment device for transfemoral prosthesis

Authors

DOI:

https://doi.org/10.17533/udea.redin.20200805

Keywords:

lower limb amputation, gait, prototypes, design engineering, 3D printing

Abstract

The alignment of lower limb prosthesis is one of the most significant procedures for prosthetic adaptation since it allows greater comfort and fulfillment of the prosthesis function. Prosthetic misalignment can lead to severe consequences for the patient, such as gait instability and increased load on the residual limb. The fitting and alignment of the prosthetic system is a highly subjective procedure that relies mainly on the professional experience of the prosthetist. This study aims to design a prototype of a low-cost alignment device for lower transfemoral prosthesis to be used temporarily during the prosthesis static alignment. The conceptual design methodology was implemented. The device was modeled in SolidWorks, and the mechanical resistance of the device was determined in a finite element analysis in Ansys. Among the tested materials, CarbonFil exhibited the best behavior showing promising results for a 3D printed alignment device prototype. The viability of this device’s massive production should be considered to further reduce its cost and be implemented in a larger number of prosthetic centers worldwide.

|Abstract
= 831 veces | HTML
= 0 veces| | PDF
= 546 veces|

Downloads

Download data is not yet available.

Author Biographies

Ana Isabel Vásquez, University of Antioquia

Student, Bioinstrumentation and Clinical Engineering Research Group - GIBIC.

Juliana Uribe Pérez, University of Antioquia

MSc and PhD, Bioinstrumentation and Clinical Engineering Research Group - GIBIC.

References

(2018, Feb.) Sala situacional de las personas con discapacidad (PCD). Ministerio de Salud y Protección Social. Bogotá, Colombia. [Online]. Available: https://bit.ly/3h6svZj

Manual para amputados de extremidad inferior, Institut Desvern de Protètica, Barcelona, España, 2003.

K. R. Kaufman, S. Fritoli, and C. A. Frigo, “Gait asymmetry of transfemoral amputees using mechanical and microprocessorcontrolled prosthetic knees,” Clin Biomech., vol. 27, no. 5, June 2012. [Online]. Available: https://doi.org/10.1016/j.clinbiomech.2011.11.011

Documento de posición conjunta sobre suministros de dispositivos de movilidad en entornos con recursos escasos, Organizacion Mundial de la Salud, Geneva, Switzerland, 2012.

M. S. Zahedi, W. D. Spence, S. E. Solomonidis, and J. P. Paul, “Alignment of lower-limb prostheses,” J. Rehabil. Res. Dev., vol. 23, no. 2, pp. 2–19, Apr. 1986.

M. S. Pinzur and et al., “The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: A preliminary report,” The Journal of Rehabilitation Research and Development, vol. 32, no. 4, pp. 373–377, Dec. 1995.

J. Sánchez, R. J. Hernández, and J. E. Torres, “The mechanical design of a transfemoral prosthesis using computational tools and design methodology,” Ingeniería e investigación, vol. 32, no. 3, pp. 14– 18, Dec. 2012.

O. Adebayo and et al., “Design of a new prosthetic alignment adaptor with quantitative alignment and height adjustment,” in 37th Annual Northeast Bioengineering Conference (NEBEC), Troy, NY, USA, 2011, pp. 1–2.

(2009) Alignment systems step forward. The O&P Edge. Accessed Apr. 03, 2019. [Online]. Available: https://bit.ly/3kU4wPd

P. Rayothee and K. Sasaki, “Design and analyses of stress - strain distribution in new coupling for lower limb prosthesis (CLLP) using finite element method,” in 7th Biomedical Engineering International Conference, Fukuoka, Japan, 2014, pp. 1–4.

Artlimb, the art of prosthetics. ArtLimb. Accessed Jul. 2019. [Online]. Available: https://bit.ly/318Tv4L

A. Soma, “Proceso de elaboración de dispositivos ortopédicos para la marcha órtesis larga tipo KAFO prótesis modular transfemoral tipo ovo-longitudinal,” Undergraduate, Universidad Don Bosco, San Salvador, El Salvador, 2007.

I. Horváth, “On some crucial issues of computer support of conceptual design,” in Product Engineering, D. Talabă and T. Roche, Eds. Dordrecht, Netherlands: Springer Netherlands, 2005, pp. 123–142.

K. T. Ulrich and S. Eppinger, Diseño y desarrollo de productos, 5th ed. Ciudad de México, México: McGraw-Hill, 2013.

(2017) ABS y PLA: diferencias, ventajas y desventajas. Impresoras 3D. Accessed Jul. 2019. [Online]. Available: https://bit.ly/3jkAwKZ

Catalogue 3d printer filaments. Formfutura. Accessed Apr. 03, 2019. [Online]. Available: https://bit.ly/34gkUDZ

J. A. Vélez, L. M. Bustamante, and J. A. Villarraga, “Relación entre la longitud de miembro residual y la distribución de esfuerzos sobre el muñón para amputados transfemorales,” Revista EIA, no. 23, pp. 107–115, 2015.

R. C. Hibbeler, Mecánica de materiales, 6th ed. Ciudad de México, México: Pearson, 2006.

F. M. AL-Oqla and S. M. Sapuan, Materials Selection for Natural Fiber Composites. Cambridge, England: Woodhead Publishing, 2017.

A. Staros, “Dynamic alignment of artificial legs with the adjustable coupling,” Artificial Limbs, vol. 7, pp. 31–43, 1963.

Prosthetics upper limb. Ottobock. Accessed Apr. 03, 2019. [Online]. Available: https://bit.ly/32aVc0G

L. J. Haberman and L. E. Dallos, “Alignment assembly for a prosthesis,” U.S. Patent US7 338 532B2, Mar. 04, 2008.

S. Kapp and J. A. Miller, “Lower limb prosthetics,” in Care of combat amputee, P. F. Pasquina, R. A. Cooper, and M. K. Lenhart, Eds. Washington DC, USA: Government Printing Office, 2009, pp. 553– 580.

Downloads

Published

2020-08-28

How to Cite

Vásquez, A. I., & Uribe Pérez, J. (2020). Conceptual design of an alignment device for transfemoral prosthesis. Revista Facultad De Ingeniería Universidad De Antioquia, (102), 108–114. https://doi.org/10.17533/udea.redin.20200805