Magnetic refrigeration: analysis located electron model

Authors

  • John Jairo Hoyos Quintero Universidad Nacional de Colombia
  • Juan Esteban Velásquez Colorquímica
  • Farid Chejne Janna Universidad Nacional de Colombia
  • Alan Francis Hill Betancourt Universidad Pontificia Bolivariana

DOI:

https://doi.org/10.17533/udea.redin.343170

Keywords:

magnetic refrigeration, magnetocaloric effect, CurieWeiss law

Abstract

Magnetic refrigeration is a technology with great commercial potential. Energy consumption and environmental impact associated with this technology are lower than those from conventional refrigeration systems. This paper presents the main aspects of the theory of the magnetocaloric effect. In addition, the application of the located electron model to magnetic refrigeration is analyzed. The model permits just a qualitative description of the behaviour of magnetocaloric effect in the vicinity of the magnetic transformation temperature.

|Abstract
= 127 veces | PDF (ESPAÑOL (ESPAÑA))
= 64 veces|

Downloads

References

J. J. Hoyos. Refrigeración magnética. Medellín. Universidad Nacional de Colombia. 2004. pp. 25-37, 55-103.

K. Gschneidner, V. Pecharsky. “Magnetic refrigeration materials (invited)”. En: Journal of applied physics. Vol. 85. N.o 8. Abril, 1999. pp. 5365-5368. DOI: https://doi.org/10.1063/1.369979

K. Yoshida. Theory of magnetism. Springer. Alemania. 1998. pp. 3-11.

J. E. Velásquez et al. “Producción de frío a partir de campos magnéticos. Parte I: Conceptos básicos”. En: Revista Facultad de Ingeniería. N.o 29. Junio, 2003. pp. 141-152.

A. Tishin. “Adiabatic processes in magnetic materials”. En: advances in cryogenic engineering (materials). Vol. 46. 2000. pp. 391-395. DOI: https://doi.org/10.1007/978-1-4615-4293-3_50

A. Pecharsky et al. “The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2”. En: Journal Applied Physics. Vol. 93. N.o 8. Abril, 2003. pp. 4722-4728. DOI: https://doi.org/10.1063/1.1558210

V. Pecharsky, K. Gschneidner.“Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290K”. En: Applied Physics Letters. Vol. 70. N.o 24. Junio, 1997. pp. 3299-3301. DOI: https://doi.org/10.1063/1.119206

A. Rowe. “Design of an active magnetic regenerator test apparatus”. En: Advances in cryogenic engineering: proceedings of the cryogenic engineering conference. Vol. 47. 2002. pp. 995-1002.

A. Tishin. “Magnetic refrigeration in the lowtemperature range”. En: Journal Applied of physics. Vol. 68. N.o15. Diciembre, 1990. pp. 6480-6484. DOI: https://doi.org/10.1063/1.347186

J. Coey. Rare-earth iron permanent magnets. New York. Oxford University Press INC. 1996. pp. 1-22. DOI: https://doi.org/10.1093/oso/9780198517924.003.0001

J. E. Velásquez et al. “Producción de frío a partir de campos magnéticos. Parte II: Análisis termodinámico”. En: Revista Facultad de Ingeniería. N.o 30. Diciembre, 2003. pp. 71-77.

J. S. Lee. “Evaluation of the magnetocaloric effect from magnetization and heat capacity data”. En: Physics Sstate Solid (b). Vol. 241. N.o 7. 2004. pp. 1765-1768. DOI: https://doi.org/10.1002/pssb.200304685

C. Zimml et al. “Description and Performance of a near-room temperature magnetic refrigerator”. En: Advances in Cryogenic Engineering. Vol. 43. 1998. pp. 1759-1766. DOI: https://doi.org/10.1007/978-1-4757-9047-4_222

Published

2005-07-24

How to Cite

Hoyos Quintero, J. J. ., Velásquez, J. E. ., Chejne Janna, F. ., & Hill Betancourt, A. F. . (2005). Magnetic refrigeration: analysis located electron model. Revista Facultad De Ingeniería Universidad De Antioquia, (34), 52–58. https://doi.org/10.17533/udea.redin.343170