Rainfall-intensity effect on landslide hazard assessment due to climate change in north-western Colombian Andes
DOI:
https://doi.org/10.17533/udea.redin.20201215Keywords:
disasters, landslides, natural hazards, climate changeAbstract
Landslides triggered by rainfall are one of the most frequent causes of disasters in tropical countries and mountainous terrains. Recent studies show an upsurge in landslide occurrence as an expected impact of human-induced climate change. This paper presents the analysis and implementation of two different physically-based models, SHALSTAB and TRIGRS, to evaluate the effect of rainfall on landslide hazard assessment in the north-western Colombian Andes. Intensity-Duration-Frequency curves were used in climate change scenarios for different return periods. According to the results, although higher rainfall intensities increase, landslide occurrence does not escalate in a direct or proportional relationship. Considering a steady infiltration process (SHALSTAB), the results show an expansion of d unstable areas, compared with a transient infiltration process (TRIGRS). A greater influence of rainfall duration instead of rainfall intensity was observed. The results highlight the need for studies that incorporate the scenarios of variability and climate change in the hazard assessment and land planning in the long term.
Downloads
References
R. L. Schuster, D. A. Salcedo, and L. Valenzuela, “Overview of catastrophic landslides of South America in the twentieth century,” in Catastrophic landslides: Effects, occurrence, and mechanisms, S. G. Evans and J. V. DeGraff, Eds. Geological Society of America, 2002.
S. A. Sepúlveda and D. N. Petley, “Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean,” Nat. Hazards Earth Syst. Sci., vol. 15, no. 8, april 2015. [Online]. Available: https://doi.org/10.5194/nhess-15-1821-2015
M. Dilley, R. S. Chen, U. Deichmann, A. L. Lerner, and M. Arnold, Natural Disaster Hotspots: A Global Risk Analysis. Washington, DC: World Bank, 2005.
D. Petley, “The global occurrence of fatal landslides in 2007,” in International Conference on Management of Landslide Hazard in the Asia–Pacific Region, Tokyo, Japan, 2008, pp. 590–600.
EM-DAT. (20009) The international disaster database. centre for research on the epidemiolgy of distasters-cred. [EM-DAT]. Accessed Nov. 2017. [Online]. Available: https://www.emdat.be/
T. G. Huntington, “Evidence for intensification of the global water cycle: Review and synthesis,” J. Hydrol., vol. 319, no. 1-4, March 15 2006. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2005.07.003
R. E. Morss, O. V. Wilhelmi, G. A. Meehl, and L. Dilling, “Improving societal outcomes of extreme weather in a changing climate: An integrated perspective,” Annu. Rev. Environ. Resour., vol. 36, no. 1, August 12 2011. [Online]. Available: https://doi.org/10.1146/annurev-environ-060809-100145
P. Höppe and R. Pielke. (2006, May) Workshop on climate change and disaster losses. Understanding and attributing trends and projections. Munich Re, U.S. National Science Foundation, Tyndall Center for Climate Change Research, GKSS Research Center. [Online]. Available: https://bit.ly/32WcboM
K. Edenhofer and et al, Climate Change 2014 Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY, USA: Cambridge University Press, 2014.
M. J. Crozier, “Deciphering the effect of climate change on landslide activity: A review,” Geomorphology, vol. 124, no. 3-4, December 15 2010. [Online]. Available: https://doi.org/10.1016/j.geomorph.2010.04.009
S. L. Gariano and F. Guzzetti, “Landslides in a changing climate,” Earth-Science Reviews, vol. 162, November 2016. [Online]. Available: https://doi.org/10.1016/j.earscirev.2016.08.011
S. I. Seneviratne and et al, “Changes in climate extremes and their impacts on the natural physical environment,” in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field, V. Barros, T. F. Stocker, and Q. Dahe, Eds. New York, NY, USA: Cambridge University Press, 2012, pp. 109–230.
J. A. Coe, “Landslide hazards and climate change: A perspective from the United States,” in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, K. Ho, S. Lacasse, and L. Picarelli, Eds. CRC Press, 2016, pp. 479–523.
C. Melchiorre and P. Frattini, “Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway,” Clim. Change, vol. 113, no. 2, July 2012. [Online]. Available: https://doi.org/10.1007/s10584-011-0325-0
R. C. Sidle and H. Ochiai, Eds., Landslides : Processes, prediction, and land use, ser. Water Resources Monograph. American Geophysical Union, 2006.
H. G. K. and et al, “Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios,” Environ. Earth Sci., vol. 73, no. 3, 2015. [Online]. Available: https://doi.org/10.1007/s12665-014-3775-7
C. Gassner, C. Promper, S. Beguería, and T. Glade, “Climate change impact for spatial landslide susceptibility,” in Engineering geology for society and territory - Volume 1: Climate change and engineering geology, G. Lollino, A. Manconi, J. Clague, W. Shan, and M. Chiarle, Eds. Springer, 2015, pp. 429–433.
K. J. Shou and C. M. Yang, “Predictive analysis of landslide susceptibility under climate change conditions - A study on the Chingshui River Watershed of Taiwan,” Eng. Geol., vol. 192, June 18 2015. [Online]. Available: https://doi.org/10.1016/j.enggeo.2015.03.012
A. Baills, R. Vandromme, N. Desramaut, O. Sedan, and G. Grandjean, “Changing patterns in climate-driven landslide hazard: An alpine test site,” in Landslide science and practice, C. Margottini, P. Canuti, and K. Sass, Eds. Springer, 2013, pp. 93–98.
L. Moung, S. Won, W. Joong, P. Inhye, and L. Saro, “Spatial and temporal change in landslide hazard by future climate change scenarios using probabilistic-based frequency ratio model,” Geocarto Int., vol. 29, no. 6, 2014. [Online]. Available: https://doi.org/10.1080/10106049.2013.826739
M. G. Winter and B. Shearer, “Climate change and landslide hazard and risk in Scotland,” in Engineering geology for society and territory - Volume 1: Climate change and engineering geology, G. Lollino, A. Manconi, J. Clague, W.Shan, and M. Chiarle, Eds. Springer, 2014, pp. 411–414.
N. Arambepola, S. Basnayake, R. K. Bhasin, and O. Kjekstad, “Approaches for promoting landslide early warming in a changing climate scenario,” in Landslides: Global risk preparedness, K. Sassa, B. Rouhban, S. Briceño, M. McSaveney, and B. He, Eds. Springer, 2013, pp. 179–188.
L. Ciabatta and et al, “Assessing the impact of climate-change scenarios on landslide occurrence in Umbria Region, Italy,” J. Hydrol., vol. 541, Part A, October 2016. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2016.02.007
J. A. Coe and J. W. Godt, “Review of approaches for assesing the impact of climate change on landslides hazards,” in 11th International Symposium on Landslides (ISL) and the 2nd North American Symposium on Landslides, Banff, Canada, 2012.
N. Dixon and E. Brook, “Impact of predicted climate change on landslide reactivation: Case study of Mam Tor, UK,” Landslides, vol. 4, no. 2, January 3 2007. [Online]. Available: https://doi.org/10.1007/s10346-006-0071-y
M. Alvioli and et al, “Implications of climate change on landslide hazard in Central Italy,” Sci. Total Environ., vol. 630, July 15 2008. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2018.02.315
H. J. Fowler, S. Blenkinsop, and C. Tebaldi, “Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling,” International Journal of Climatology, vol. 27, no. 12, October 2007. [Online]. Available: https://doi.org/10.1002/joc.1556
C. Bonnard, L. Tacher, and M. Beniston, “Prediction of landslide movements caused by climate change: Modelling the behaviour of a mean elevation large slide in the Alps and assessing its uncertainties,” in 10th international symposium on landslides and engineered slopes, Xian, China, 2008, pp. 217–227.
L. Comegna, L. Picarelli, E. Bucchignani, and P. Mercogliano, “Potential effects of incoming climate changes on the behaviour of slow active landslides in clay,” Landslides, vol. 10, no. 4, August 2013. [Online]. Available: https://doi.org/10.1007/s10346-012-0339-3
G. Rianna and et al, “Evaluation of the effects of climate changes on landslide activity of Orvieto clayey slope,” Procedia Earth Planet. Sci., vol. 9, December 2014. [Online]. Available: https://doi.org/10.1016/j.proeps.2014.06.017
M. Jakob and S. Lambert, “Climate change effects on landslides along the southwest coast of British Columbia,” International Journal of Climatology, vol. 107, no. 3-4, June 15 2009. [Online]. Available: https://doi.org/10.1016/j.geomorph.2008.12.009
V. Jomelli, D. Brunstein, M. Déqué, M. Vrac, and D. Grancher, “Impacts of future climatic change (2070–2099) on the potential occurrence of debris flows: A case study in the Massif des Ecrins (French Alps),” Clim. Change, vol. 97, no. 1, August 20 2009. [Online]. Available: https://doi.org/10.1007/s10584-009-9616-0
S. H. Chiang and K. T. Chang, “The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010-2099,” Geomorphology, vol. 133, no. 3-4, October 15 2011. [Online]. Available: https://doi.org/10.1007/s10584-009-9616-0
C. Hammond, D. Hall, S. Miller, and P. Swetik, “Level I Stability Analysis (LISA) documentation for version 2.0,” Intermountain Research Station, Ogden, UT, Tech. Rep. INT-285, 1992.
D. R. Montgomery and W. E. Dietrich, “A physically based model for the topographic control on shallow landsliding,” Water Resour. Res., vol. 30, no. 4, April 1994. [Online]. Available: https://doi.org/10.1029/93WR02979
R. T. Pack, D. G. Tarboton, and C. N. Goodwin, “The sinmap approach to terrain stability mapping,” in 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada, 1998, p. 8.
R. L. Baum, W. Z. Savage, and J. W. Godt, “TRIGRS — A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0,” U.S. Department of the Interior, U.S. Geological Survey, Tech. Rep. 2008–1159, 1988.
E. Aristizabal, S. Yokota, H. Ohira, Hiroto, and J. Nagai, “Dating of slope sediments and alluvial deposits in the Aburra Valley, Colombia,” Geosci. Rept. Shimane Univ., vol. 23, pp. 85–88, 2004.
UNFPA United Nations Population Fund, State of World Population 2007. Unleashing the Potential of Urban Growth. UNFPA United Nations Population Fund, 2007.
DANE Departamento Administrativo Nacional de Estadistica. (2018) Censo nacional de población y vivienda 2018. [DANE Departamento Administrativo Nacional de Estadistica]. [Online]. Available: https://bit.ly/391bj6n
World Bank, Informe anual 2012. World Bank, 2012.
O. Sanchez and E. Aristizábal, “Spatial and temporal paterns and socieconomic impact of landslides in Colombia,” in 20th EGU General Assembly, EGU2018, Vienna, Austria, 2018.
Departamento Administrativo Nacional de Estadística (DANE), Atlas Estadístico de Colombia. Tomo I Demográfico. Bogotá, D. C., Col: Departamento Administrativo Nacional de Estadística (DANE), 2012.
E. Aristizábal and J. Gómez, “Inventario de emergencias y desastres en el Valle de Aburrá. Originados por fenómenos naturales y antropicos en el periodo 1880-2007,” Gestión y Ambiente, vol. 10, no. 2, pp. 17–30, Aug. 2007.
G. Poveda and et al., “Linking long-term water balances and statistical scaling to estimate river flows along the drainage network of Colombia,” J. Hydrol. Eng., vol. 12, no. 1, January 2007. [Online]. Available: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(4)
O. D. Álvarez, J. I. Vélez, and G. Poveda, “Improved long-term mean annual rainfall fields for Colombia,” J. Hydrol. Eng., vol. 31, no. 14, November 30 2011. [Online]. Available: https://doi.org/10.1002/joc.2232
J. Null. (2004) Años El Niño - La Niña. [Universidad de Buenos Aires]. Accessed Oct. 2017. [Online]. Available: https://bit.ly/3anlfI2
G. Poveda, D. M. Álvarez, and O. A. Rueda, “Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots,” Climate Dynamic, vol. 36, no. 11, 2011. [Online]. Available: https://doi.org/10.1007/s00382-010-0931-y
G. Poveda and L. F. Salazar, “Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia,” J. Hydrol. Eng., vol. 93, no. 3, November 15 2004. [Online]. Available: https://doi.org/10.1016/j.rse.2004.08.001
A. Ortiz, M. A. Ruiz, and J. P. Rodríguez, “Climatic variability patterns associate to water resource management systems,” Int. J. Appl. Eng. Res., vol. 12, no. 20, pp. 10 043–10 056, Dec. 2017.
M. Zuluaga and G. Poveda, “Diagnóstico de sistemas convectivos de mesoescala sobre Colombia y el océano Pacífico Oriental durante 1998-2002,” Avances en Recursos Hidráulicos, no. 11, pp. 145–160, Sep. 2004.
G. Poveda and et al, “Diagnóstico del ciclo Anual y efectos del ENSO sobre la intensidad máxima de lluvias de duración entre 1 y 24 horas en los Andes de Colombia,” Meteorol. Colomb., vol. 5, pp. 67–74, Jan. 2002.
G. Poveda, “Escala de informacion, escala de fluctuacion y entropia de las lluvias en el Valle de Aburra, Colombia,” Rev. la Acad. Colomb. Ciencias, vol. 33, no. 128, pp. 339–356, Sep. 2009.
A. M. Carmona and G. Poveda, “Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition,” Clim. Change, vol. 123, March 2014. [Online]. Available: https://doi.org/10.1007/s10584-013-1046-3
A. F. Hurtado and O. J. Mesa, “Climate change and space-time variability of the precipitation in Colombia,” Revista EIA, vol. 12, no. 24, pp. 131–150, Jul. 2015.
F. Ruiz and et al, Nuevos escenarios de Cambio Climático para Colombia 2011-2100, 1st ed. Bogotá, Colombia: IDEAM Instituto de Hidrología, Meteorología y Estudios Ambientales, PNUD Programa de las Naciones Unidas para el Desarrollo, 2015.
J. D. Pabón, “Cambio climático en Colombia: Tendencias en la segunda mitad del siglo XX y escenarios posibles para el siglo XXI,” Rev. acad. colomb. cienc. exact. fis. nat., vol. 63, no. 139, pp. 261–278, Apr. 2012.
Instituto de Estudios Ambientales - IDEA, Universidad Nacional de Colombia. (2008) Formulación del plan de acción para el cambio y la variabilidad climática del Valle de Aburrá. [Área Metropolitana del Valle de Aburrá – AMVA]. [Online]. Available: https://bit.ly/2KvJPeO
E. M. O’Loughlin, “Prediction of surface saturation zones in natural catchments by topographic analysis,” Water Resour. Res., vol. 22, no. 5, May 1986. [Online]. Available: https://doi.org/10.1029/WR022i005p00794
R. M. Iverson, “Landslide triggering by rain infiltration,” Water Resour. Res., vol. 36, no. 7, July 1 2000. [Online]. Available: https://doi.org/10.1029/2000WR900090
Área Metropolitana del Valle de Aburrá-AMVA, Universidad Nacional de Colombia, “Estudios básicos de amenaza por movimientos en masa, inundaciones y avenidas torrenciales de los municipios de Barbosa, Copacabana, Bello, Itagüí, Envigado, La Estrella y Caldas para la ordenación territorial,” unpublished.
Universidad Nacional de Colombia, “Amenaza, vulnerabilidad y riesgo por movimientos en masa, avenidas torrenciales e inundaciones en el Valle de Aburrá. Formulación de propuestas de gestión,” Municipio de Medellín, Área Metropolitana del Valle de Aburrá, Municipio de Envigado, Corantioquia, Medellín, Col, Tech. Rep. 4800002397 de 2007, 2009.
Universidad los Andes, Departamento administrativo de gestión del riesgo de desastres, Alcaldía de Medellín, Área metropolitana del Valle de Aburrá, Armonización de la microzonificación sísmica de los municipios del Valle de Aburrá, al reglamento NSR-10 e inclusión de los cinco corregimientos del Municipio de Medellín. Área metropolitana del Valle de Aburrá, 2014.
Alcaldía Municipio de Copacabana. (2013, Feb.) Estudio geotécnico hidrológico, hidráulico y diseño estructural de las obras de paso sobre la quebrada Los Aguacates, sector Los Yepes. [Online]. Available: https://bit.ly/3ahQDaN
Solingral, “Estudio de riesgo al deslizamiento en el municipio de Envigado,” Solingral, Envigado, Col, Tech. Rep. 018-2004, May 2004.
Alberta Transportation and utilities. (1997, Jun.) Pavement design manual. Alberta Transportation and utilities. [Online]. Available: https://bit.ly/3kSAbiS
E. V. Aristizábal, J. I. Vélez, and H. E. Martínez, “A comparison of linear and nonlinear model performance of shia landslide: A forecasting model for rainfall-induced landslides,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 80, September 2016. [Online]. Available: http://dx.doi.org/10.17533/udea.redin.n80a09
F. Catani, S. Segoni, and G. Falorni, “An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale,” Water Resour. Res., vol. 46, no. 5, May 5 2010. [Online]. Available: https://doi.org/10.1029/2008WR007450
Área Metropolitana del Valle de Aburrá, “Microzonificación sísmica detallada de los municipios de Barbosa, Girardota, Copacabana, Sabaneta, la Estrella, Caldas y Envigado,” Área Metropolitana del Valle de Aburrá, Tech. Rep., 2006.
W. R. Dearman, F. J. Baynes, and T. Y. Irfan, “Engineering grading of weathered granite,” Eng. Geol., vol. 12, 1978. [Online]. Available: https://doi.org/10.1016/0013-7952(78)90018-2
G. Crosta, “Regionalization of rainfall thresholds-an aid to landslide hazard evaluation,” Environ. Geol., vol. 35, no. 2-3, August 1998. [Online]. Available: https://doi.org/10.1007/S002540050300
F. Wang and H. Shibata, “Influence of soil permeability on rainfall-induced flowslides in laboratory flume tests,” Can. Geotech. J., vol. 44, no. 9, September 2007. [Online]. Available: https://doi.org/10.1139/T07-042
M. Elhakeem and et al, “Understanding saturated hydraulic conductivity under seasonal changes in climate and land use,” Geoderma, vol. 315, April 1 2018. [Online]. Available: https://doi.org/10.1016/j.geoderma.2017.11.011
M. Rienzner and C. Gandolfi, “Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale,” Soil Tillage Res., vol. 135, January 2014. [Online]. Available: https://doi.org/10.1016/j.still.2013.08.012
Corporación Autónoma Regional del Centro de Antioquia - CORANTIOQUIA, Subdirección de Gestión Ambiental. (2018) Actualización POMCA río Aburrá : Plan de ordenación y manejo de la cuenca hidrográfica. [Online]. Available: https://bit.ly/2K5N5hi
H. González, “Mapa geológico del departamento de Antioquia,” Ingeominas, Tech. Rep. Escala 1:400.000, 2001. [Online]. Available: https://bit.ly/3lZyIsu
Characteristic Coefficients of soils, Swiss Standard SN 670 010b, 1999.
M. Carter and S. P. Bentley, Correlations of Soil Properties. Pentech Press, 1991.
M. Dysli and W. Steiner, Eds., Corrélations en mécanique des sols: Correlations in soil mechanics: Korrelationen in der Bodenmechanik, ser. Génie civil. Presses polytechniques et universitaires romandes, 2011.
T. R. West, Geology applied to engineering. Englewood Cliffs, NJ, USA: Prentice Hall, 1995.
H. Rahardjo, T. H. Ong, R. B. Rezaur, and E. C. Leong, “Factors controlling instability of homogeneous soil slopes under rainfall,” J. Geotech. Geoenvironmental Eng., vol. 133, no. 12, December 2007. [Online]. Available: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1532)
L. Ayalew and H. Yamagishi, “Slope failures in the Blue Nile basin, as seen from landscape evolution perspective,” Geomorphology, vol. 57, no. 1-2, January 10 2004. [Online]. Available: https://doi.org/10.1016/S0169-555X(03)00085-0
O. Normaniza, H. A. Faisal, and S. S. Barakbah, “Engineering properties of Leucaena leucocephala for prevention of slope failure,” Ecol. Eng., vol. 32, no. 3, March 3 2008. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2007.11.004
A. Gonzalez and S. B. Mickovski, “Hydrological effect of vegetation against rainfall-induced landslides,” J. Hydrol., vol. 549, June 2017. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2017.04.014
A. Rahimi, H. Rahardjo, and E. C. Leong, “Effect of hydraulic properties of soil on rainfall-induced slope failure,” Eng. Geol., vol. 114, no. 3-4, August 10 2010. [Online]. Available: https://doi.org/10.1016/j.enggeo.2010.04.010
D. R. Montgomery, K. Sullivan, and H. M. Greenberg, “Regional test of a model for shallow landsliding,” Hydrol. Process., vol. 12, no. 6, May 1998. [Online]. Available: https://doi.org/10.1002/(SICI)1099 1085(199805)12:6<943::AID-HYP664>3.0.CO;2-Z
R. Rosso, M. C. Rulli, and G. Vannucchi, “A physically based model for the hydrologic control on shallow landsliding,” Water Resour. Res., vol. 42, no. 6, June 20 2006. [Online]. Available: https://doi.org/10.1029/2005WR004369
N. F. Fernandes and et al, “Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling,” Catena, vol. 55, no. 2, January 20 2004. [Online]. Available: https://doi.org/10.1016/S0341-8162(03)00115-2
M. Borga, G. Dalla, C. Gregoretti, and L. Marchi, “Assessment of shallow landsliding by using a physically based model of hillslope stability,” Hydrol. Process., vol. 16, no. 14, October 15 2002. [Online]. Available: https://doi.org/10.1002/hyp.1074
A. Talebi, P. A. Troch, and R. Uijlenhoet, “A steady-state analytical slope stability model for complex hillslopes,” Hydrol. Process., vol. 22, no. 4, February 15 2008. [Online]. Available: https://doi.org/10.1002/hyp.6881
A. Berne, R. Uijlenhoet, and P. A. Troch, “Similarity analysis of subsurface flow response of hillslopes with complex geometry,” Water Resour. Res., vol. 41, no. 9, September 16 2005. [Online]. Available: https://doi.org/10.1029/2004WR003629
C. Lanni, R. Rigon, E. Cordano, and A. Tarantino, “Analysis of the effect of normal and lateral subsurface water flow on the triggering of shallow landslides with a distributed hydrological model,” Landslide Process. From Geomorphol. Mapp. to Dyn. Model, pp. 157–162, Jan. 2009.
Y. Matsushi, T. Hattanji, and Y. Matsukura, “Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan,” Geomorphology, vol. 76, no. 1-2, June 5 2006. [Online]. Available: https://doi.org/10.1016/j.geomorph.2005.10.003
S. H. Chiang and K. T. Chang, “Application of radar data to modeling rainfall-induced landslides,” Geomorphology, vol. 103, no. 3, February 1 2009. [Online]. Available: https://doi.org/10.1016/j.geomorph.2008.06.012
P. D’Odorico, S. Fagherazzi, and R. Rigon, “Potential for landsliding: Dependence on hyetograph characteristics,” J. Geophys. Res. Earth Surf., vol. 110, no. 1, March 2005. [Online]. Available: https://doi.org/10.1029/2004JF000127
M. J. Crozier, “The climate-landslide couple : A southern hemisphere perspective,” Rapid mass movement as a source of climatic evidence for the Holocene, pp. 333–354, 1997.
N. Gofar, L. Min, and A. Kassim, “Response of suction distribution to rainfall infiltration in soil slope,” EJGE, vol. 13, pp. 1–13, Jan. 2008.
A. S. Muntohar and H. J. Liao, “Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological-geotechnical model,” Environ. Geol., vol. 56, no. 6, February 2009. [Online]. Available: https://doi.org/10.1007/s00254-008-1215-2
T. W. J. Van, J. Buma, and L. P. H. Van, “A view on some hydrological triggering systems in landslides,” Geomorphology, vol. 30, no. 1-2, October 1999. [Online]. Available: https://doi.org/10.1016/S0169-555X(99)00042-2
M. T. J. Terlien, “The determination of statistical and deterministic hydrological landslide-triggering thresholds,” Environ. Geol., vol. 35, no. 2-3, August 1998. [Online]. Available: https://doi.org/10.1007/S002540050299
S. M. Brooks, M. J. Crozier, T. W. Glade, and M. G. Anderson, “Towards establishing climatic thresholds for slope instability: Use of a physically-based combined soil hydrology-slope stability model,” Pure Appl. Geophys., vol. 161, no. 4, March 2004. [Online]. Available: https://doi.org/10.1007/s00024-003-2477-y
R. C. Sidle and T. P. Burt, “Temperate forests and rangelands,” in Geomorphology and Global Environmental Change, O. Slaymaker, T. Spencer, and C. Embleton, Eds. Cambridge University Press, 2009, pp. 321–343.
D. Petley, “Global patterns of loss of life from landslides,” Geology, vol. 40, no. 10, October 2012. [Online]. Available: https://doi.org/10.1130/G33217.1
World Meteorological Organization (WMO), The Global climate 2001-2010: A Decade of Climate Extremes. Geneva, CH: World Meteorological Organization (WMO), 2013.
UNISDR, the United Nations Office for Disaster Risk Reduction, “Annual report 2013: Final report on 2012-2013 biennium work programme,” UNISDR, the United Nations Office for Disaster Risk Reduction, Geneva, CH, Tech. Rep., May 2014.
S. L. Gariano, G. Rianna, O. Petrucci, and F. Guzzetti, “Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale,” Sci. Total Environ., vol. 596-597, October 15 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2017.03.103
M. Mukhlisin, K. Kosugi, Y. Satofuka, and T. Mizuyama, “Effects of soil porosity on slope stability and debris flow runout at a weathered granitic hillslope,” Vadose Zo. J., vol. 5, no. 1, January 2006. [Online]. Available: https://doi.org/10.2136/vzj2005.0044
R. J. Marin and M. F. Velásquez, “Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides,” Geomorphology, vol. 351, February 15 2020. [Online]. Available: https://doi.org/10.1016/j.geomorph.2019.106976
R. J. Marín, E. García, and E. Aristizábal, “Rainfall thresholds for shallow landslides based on physical models: Application in a sub-basin of the Valle de Aburrá (Colombia),” DYNA, vol. 86, no. 210, July 2019. [Online]. Available: http://dx.doi.org/10.15446/dyna.v86n210.77166
B. C. Vieira, N. F. Fernandes, O. A. Filho, T. D. Martins, and D. R. Montgomery, “Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil,” Environ. Earth Sci., vol. 77, no. 6, March 2018. [Online]. Available: http://dx.doi.org/10.1007/s12665-018-7436-0
T. König, H. J. H. Kux, and R. M. Mendes, “Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas,” Nat. Hazards, vol. 97, no. 2, August 2019. [Online]. Available: http://dx.doi.org/10.1007/s11069-019-03691-4
V. Baumann, C. Bonadonna, S. Cuomo, M. Moscariello, and I. Manzella, “Slope stability models for rainfall-induced lahars during long-lasting eruptions,” J. Volcanol. Geotherm. Res., vol. 359, June 15 2018. [Online]. Available: https://doi.org/10.1016/j.jvolgeores.2018.06.018
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.