Planning and performance measurement in higher education: three case studies of operational research application
DOI:
https://doi.org/10.17533/udea.redin.20210526Keywords:
operations/operational research, higher education, systems dynamics, data envelopment analysis, mathematical programmingAbstract
In this work, we illustrate the application of a wide variety of Operations/operational research (OR) tools in higher education through three case studies based on practical applications conducted in the Engineering School of the Universidad de Antioquia. These case studies focus, respectively, on capacity planning, resource allocation, and performance measurement. In the first case study, we model and predict the flow of students enrolled in the industrial engineering program through the new curriculum using system dynamics and algebraic modeling of dropout rates, finding the number of sections for the courses, and the corresponding number of faculty positions needed to support the program structure. The second case study is a course covering model for the new curriculum that considers preferences and capacities of the teaching staff in an integer programming model, to find the uncovered courses of the new curriculum. Finally, the third case study presents a data envelopment analysis tool currently used to evaluate and rank the faculty of the Engineering School according to their teaching performance. The case studies presented in this work showcase how helpful OR tools are to rationalize the decision-making process in higher education institutions.
Downloads
References
United Nations. (2015) Transforming our world: The 2030 agenda for sustainable development. [Online]. Available: https://sdgs.un.org/2030agenda
United Nations. (2020) The sustainable development goals report. [Online]. Available: https://bit.ly/2OprB0K
A. Geoffrion. (2001) What is the business of or? [Online]. Available: https://www.anderson.ucla.edu/faculty_pages/art.geoffrion/home/docs.htm
W. G. Shepherd, “Operations research in education,” Management Science, vol. 11, no. 4, Fer. 1, 1965. [Online]. Available: https://doi.org/10.1287/mnsc.11.4.C13
J. Johnes, “Operational research in education,” European Journal of Operational Research, vol. 243, no. 3, Jun. 16, 2015. [Online]. Available: https://doi.org/10.1016/j.ejor.2014.10.043
T. C. E. Cheng, “Operations research and higher education administration,” Journal of Educational Administration, vol. 32, no. 1, Ene. 1, 1993. [Online]. Available: https://doi.org/10.1108/09578239310024737
J. Johnes, “Data envelopment analysis and its application to the measurement of efficiency in higher education,” Economics of Education Review, vol. 25, no. 3, Jun., 2006. [Online]. Available: https://doi.org/10.1016/j.econedurev.2005.02.005
M. M. Kosor, “Efficiency measurement in higher education: Concepts, methods and perspective,” Procedia - Social and Behavioral Sciences, vol. 106, Dic. 10, 2013. [Online]. Available: https://doi.org/10.1016/j.sbspro.2013.12.117
J. Park and B. I. Kim, “The school bus routing problem: A review,” European Journal of Operational Research, vol. 202, no. 2, Apr. 16, 2010. [Online]. Available: https://doi.org/10.1016/j.ejor.2009.05.017
W. A. Ellegood, S. Solomon, J. North, and J. F. Campbell, “School bus routing problem: Contemporary trends and research directions,” Omega, vol. 95, Sep. 2020. [Online]. Available: https://doi.org/10.1016/j.omega.2019.03.014
E. K. Burke and S. Petrovic, “Recent research directions in automated timetabling,” European Journal of Operational Research, vol. 140, no. 2, Jul. 16, 2002. [Online]. Available: https://doi.org/10.1016/S0377-2217(02)00069-3
R. A. O. Vrielink, E. A. Jansen, E. W. Hans, and J. van Hillegersberg, “Practices in timetabling in higher education institutions: a systematic review,” Annals of Operations Research, vol. 275, no. 1, Abr. 1, 2019. [Online]. Available: https://doi.org/10.1007/s10479-017-2688-8
D. Lancaster, K. Morris, and P. Nicel, “Operational research and its application in education management,” Educational Management Administration & Leadership, vol. 11, no. 3, Nov. 1, 1983. [Online]. Available: https://doi.org/10.1177/174114328301100307
C. M. Smith and D. Shaw, “The characteristics of problem structuring methods: A literature review,” European Journal of Operational Research, vol. 274, no. 2, Abr. 16, 2019. [Online]. Available: https://doi.org/10.1016/j.ejor.2018.05.003
H. Muller-Merbach, “Five notions of or/ms problems,” Omega, vol. 39, no. 1, Ene. 2011. [Online]. Available: https://doi:10.1016/j.omega.2010.05.002.
K. Schildkamp, M. K. Lai, and L. Earl, Data-based decision making in education: Challenges and opportunities. Springer and Science & Business Media, 2012. [Online]. Available: https://bit.ly/3sRxu5S
The World University Rankings. Latin america university rankings 2020. [Online]. Available: https://bit.ly/2Rh4g2F
Universidad de Antioquia. Data udea, formación - matriculados. [Online]. Available: https://bit.ly/3sY9VIz
Departamento de Ingenieria Industrial - Universidad de Antioquia. (2014) Malla curricular versiones 9 y 4. [Online]. Available: https://sites.google.com/site/mallasingindustrial/home
W. Mckinley, J. Cheng, and A. G. Schick, “Perceptions of resource criticality in times of resource scarcity : The case of university departments,” Academy of Management, vol. 29, no. 3, Nov. 1, 1986. [Online]. Available: https://doi.org/10.5465/256229
S. Jöns, M. Jiménez-Grajales, A. Badillo-Milian, J. Nieto-Miranda, and A. Ochoa, “Sistema de pre-selección de materias para docentes: Una estrategia para mejorar la calidad educativa,” Conciencia Tecnológica, no. 48, 2014. [Online]. Available: https://www.redalyc.org/pdf/944/94432996007.pdf
D. Calle-López and et al., “Un sistema experto basado en minería de datos y programación entera lineal para soporte en la asignación de materias y diseño de horarios en educación superior,” EnfoqueUTE, vol. 9, no. 1, 2018. [Online]. Available: https://doi.org/10.29019/enfoqueute.v9n1.226
J. Clarkson and et al., Modelling and simulation techniques for supporting healthcare decision making : a selection framework. University of Cambridge. Engineering Design Centre, 2009. [Online]. Available: https://www.um.edu.mt/library/oar//handle/123456789/25837
M. S. Kennedy, “Towards a taxonomy of system dynamics models of higher education,” in Proceedings of the 18th International Conference of the System Dynamics Society, Bergen, Norway, 2000.
S. F. M. Dahlan and N. A. Yahaya, A System Dynamics Model for Determining Educational Capacity of Higher Education Institutions, segunda conferencia internacional sobre inteligencia computacional, modelado y simulación ed. Bali - Indonesia: IEEE, 2010.
Ministerio de Educación de Colombia. SPADIES-Sistema para la prevención y análisis de la deserción en las Instituciones de Educación Superior. Accessed Oct. 22, 2020. [Online]. Available: https://spadies3.mineducacion.gov.co/spadiesWeb/#/page/login
A. V. Giraldo and et al., “Vida académica en ingeniería : observar para decidir,” Ingenieria y sociedad, vol. 10, Sep. 2015. [Online]. Available: http://hdl.handle.net/10495/7760
Powersim Software Studio, Powersim Software AS, Nyborg, Noruega. [Online]. Available: https://www.powersim.com/main/products-services/powersim_products/
D. Fogarty, J. H. Blackstone, and T. R. Hoffmann, Production and Inventory Management, 2nd ed. Publishing Co: OHIO, 1991. [Online]. Available: http://repo.unikadelasalle.ac.id/index.php?p=show_detail&id=1295&keywords=
M. Shamohammadi and D. Oh, “Measuring the efficiency changes of private universities of korea: A two-stage network data envelopment analysis,” Technological Forecasting and Social Change, vol. 148, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.techfore.2019.119730
M. Salazar, Y. García, and R. Márquez, “Modelo difuso para optimizar la asignación de nuevos cargos docentes en la escuela de sistemas de la facultad de ingeniería de la universidad de los andes en venezuela,” Ciencia e Ingeniería, vol. 38, no. 2, 2017. [Online]. Available: https://bit.ly/3mr75cP
S. Gupta and S. Sinha, “Academic staff planning , allocation and optimization using genetic algorithm under the framework fuzzy goal programming,” Procedia Computer Science, vol. 172, 2020. [Online]. Available: https://doi.org/10.1016/j.procs.2020.05.130
Data udea, formación - graduados. Universidad de Antioquia. [Online]. Available: https://bit.ly/2Q0fQ1t
M. Gendreau, G. Laporte, and F. Semet, “Solving an ambulance location model by tabu search,” Location Science, vol. 5, no. 2, Ago. 1997. [Online]. Available: https://doi.org/10.1016/S0966-8349(97)00015-6
G. Laporte, F. V. Louveaux, F. Semet, and A. Thirion, “Applications of the double standard model for ambulance location,” Lecture Notes in Economics and Mathematical Systems, vol. 619, Feb. 17, 2009. [Online]. Available: https://doi.org/10.1007/978-3-540-92944-4_12
E. D. Güneş, T. Melo, and S. Nickel, “Location problems in healthcare,” in Location Science, C. Springer, Ed. New York: Springer, Cham, 2019, pp. 657–686.
M. S. Daskin, “What you should know about location modeling,” Naval Research Logistics, vol. 55, no. 4, Jun. 2008. [Online]. Available: https://doi.org/10.1002/nav.20284
D. C. Turkoglu and M. E. Genevois, “A comparative survey of service facility location problems,” Ann Oper Res, vol. 292, Sep. 21, 2020. [Online]. Available: https://doi.org/10.1007/s10479-019-03385-x
R. L. Francis, “Location theory helps solve a double-vision problem,” INFORMS Journal on Applied Analytics, vol. 39, no. 6, Dic. 1, 2009. [Online]. Available: https://doi.org/10.1287/inte.1090.0466
C. H. Chung, “Recent applications of the maximal covering location planning (m.c.l.p.) model,” Journal of the Operational Research Society, vol. 37, Ago. 1, 1986. [Online]. Available: https://doi.org/10.1057/jors.1986.134
A. T. Murray, “Maximal coverage location problem: Impacts, significance, and evolution,” International Regional Science Review, vol. 39, no. 1, Dic. 9, 2016. [Online]. Available: https://doi.org/10.1177/0160017615600222
H. A. Eiselt and V. Marianov, “Workload assignment with training, hiring and firing,” Engineering Optimization, vol. 40, no. 11, Oct. 20, 2008. [Online]. Available: https://doi.org/10.1080/03052150802293369
H. A. Eiselt and V. Marianov, “Employee positioning and workload allocation,” Computers & Operations Research, vol. 35, no. 2, Feb. 2008. [Online]. Available: https://doi.org/10.1016/j.cor.2006.03.014
J. R. Montoya-Torres, A. F. Aponte, and P. A. Rosas, “Un procedimiento de búsqueda voraz adaptativo probabilista para un problemaadaptativo probabilista para un problema monoproducto de localización de instalaciones no capacitado,” Ingeniería y desarrollo, no. 28, 2010. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=3705619
A. K. Rodríguez, G. M. Osorno, and P. A. Maya, “Relocalización de vehículos en servicios de emergencias médicas: una revisión,” Ingeniería y Ciencia., vol. 12, no. 23, 2016. [Online]. Available: http://doi:10.17230/ingciencia.12.23.9
N. Solano-Pinzón, D. Pinzón-Marroquín, and W. J. Guerrero, “Modelos de localización de cámaras de vigilancia en una red de transporte público masivo,” Ingeniería y ciencia, vol. 13, no. 25, Abr. 24, 2017. [Online]. Available: http://doi:10.17230/ingciencia.13.25.3.
F. J. Rueda, W. Adarme, A. Garzón, J. Marroquín, and G. P. Caro, “Evaluation of a facility location for a food assistance supply chain. the case of bienestarina in colombia,” Ingeniería e Investigación, vol. 39, no. 3, 2019. [Online]. Available: https://doi.org/10.15446/ing.investig.v39n3.77175
J. Arias-Osorio, R. D. Ríos-Mercado, and I. D. Tamayo-Morantes, “A model for collection of waste electrical and electronical equipment in metropolitan area of bucaramanga,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 96, 2020. [Online]. Available: https://doi.org/10.17533/udea.redin.20191259
Ilog cplex optimization studio - visión general - colombia | ibm. International Business Machines. [Online]. Available: https://ibm.co/3fRTp9p
(2002, Jun. 19,) Decreto 1279. Ministerio de Educación Nacional de Colombia. [Online]. Available: https://www.mineducacion.gov.co/1759/w3-article-86434.html?_noredirect=1
A. A. Charnes, W. W. Cooper, and E. Rhodes, “Evaluating program and managerial efficiency : an application of data envelopment analysis to program follow through,” Management Science, vol. 27, no. 6, Jun. 1, 1981. [Online]. Available: https://doi.org/10.1287/mnsc.27.6.668
J. S. Liu, L. Y. Y. Lu, W. M. Lu, and B. J. Y. Lin, “A survey of dea applications,” Omega, vol. 41, no. 5, Oct. 2013. [Online]. Available: https://doi.org/10.1016/j.omega.2012.11.004
J. Johnes, M. Portela, and E. Thanassoulis, “Efficiency in education,” Journal of the Operational Research Society, vol. 68, no. 4, Dic. 21, 2017. [Online]. Available: https://doi.org/10.1057/s41274-016-0109-z
K. D. Witte and L. López-Torres, “Efficiency in education: a review of literature and a way forward,” Journal of the Operational Research Society, vol. 68, Mar. 21, 2017. [Online]. Available: https://doi.org/10.1057/jors.2015.92
W. W. Cooper, L. M. Seiford, and J. Zhu, “Handbook on data envelopment analysis,” in nternational Series in Operations Research & Management Science. Nueva York: Springer, 2011, vol. 164.
E. Thanassoulis and et al., “Applications of data envelopment analysis in education,” in Data Envelopment Analysis. International Series in Operations Research & Management Science. Boston: Springer, 2016, vol. 238. [Online]. Available: https://doi.org/10.1007/978-1-4899-7684-0_12
E. Thanassoulis, P. K. Dey, K. Petridis, I. Goniadis, and A. C. Georgiou, “Evaluating higher education teaching performance using combined analytic hierarchy process and data envelopment analysis,” Journal of the Operational Research Society volume, vol. 68, Mar. 1, 2017. [Online]. Available: https://doi.org/10.1057/s41274-016-0165-4
M. Popović, G. Savić, M. Kuzmanović, and M. Martić, “Using data envelopment analysis and multi-criteria decision-making methods to evaluate teacher performance in higher education,” Symmetry, vol. 12, no. 4, Apr. 5, 2020. [Online]. Available: https://doi.org/10.3390/sym12040563
D. A. Visbal-Cadavid, D. Mendoza-Mendoza, and K. Corredor-Carrascal, “Evaluación del desempeño docente mediante el análisis envolvente de datos: un estudio de caso,” Entramado, vol. 11, no. 2, 2015. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=5466443
O. Buyukdagli and S. Yeralan, “How do weights affect faculty performance evaluations?” Sustainable Engineering and Innovation, vol. 2, no. 2, Jul. 14, 2020. [Online]. Available: https://doi.org/10.37868/sei.v2i2.112
L. P. Navas and et al., “Colombian higher education institutions evaluation,” Socio-Economic Planning
Sciences, vol. 71, Sep., 2020. [Online]. Available: https://doi.org/10.1016/j.seps.2020.100801
M. I. Restrepo and J. G. Villegas, “Clasificación de grupos de investigación colombianos aplicando análisis envolvente de datos,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 42, Dec., 2007. [Online]. Available: https://revistas.udea.edu.co/index.php/ ingenieria/article/view/18846/16122
O. Y. Buitrago, A. A. Espitia, and L. M. García, “Análisis envolvente de datos para la medición de la eficiencia en instituciones de educación superior: una revisión del estado del arte,” Revista Científica General José María Córdova, vol. 15, no. 19, 2017. [Online]. Available: https://doi.org/10.21830/19006586.84.
L. Cherchye, W. Moesen, N. Rogge, and T. V. Puyenbroeck, “An introduction to ‘benefit of the doubt’ composite indicators,” Social Indicators Research, vol. 82, May. 2007. [Online]. Available: http://www.techweb.com/se/index.html
G. Karagiannis and G. Paschalidou, “Assessing research effectiveness: a comparison of alternative nonparametric models,” Journal of the Operational Research Society, vol. 68, Feb. 22, 2017. [Online]. Available: https://doi.org/10.1057/s41274-016-0168-1
J. Doyle and R. Green, “Efficiency and cross-efficiency in dea: Derivations, meanings and uses,” Journal of the Operational Research Society, vol. 45, May. 1, 1994. [Online]. Available: https://doi.org/10.1057/jors.1994.84
Optimization toolbox - matlab. MathWorks. [Online]. Available: https://www.mathworks.com/products/optimization.html
M. I. Restrepo and J. G. Villegas. (2007) Análisis envolvente de datos: Introducción y herramienta pública para su utilización. [Online]. Available: https://juangvillegas.files.wordpress.com/2013/08/restrepo-villegas-dea.pdf
M. G. Nicholls, “Assessing the progress and the underlying nature of the flows of doctoral and master degree candidates using absorbing markov chains,” Higher Education, vol. 53, Jun. 2007. [Online]. Available: https://doi.org/10.1007/s10734-005-5275-x
D. Kučak, V. Juričić, and G. Đambić, “Machine learning in education - a survey of current research trends,” Annals of DAAAM and Proceedings of the International DAAAM Symposium, vol. 29, 2018. [Online]. Available: http://DOI:10.2507/29th.daaam.proceedings.059
L. Chen, P. Chen, and Z. Lin, “Artificial intelligence in education: A review,” IEEE, vol. 8, 2020. [Online]. Available: http://doi:10.1109/ACCESS.2020.2988510.
C. Romero and S. Ventura, “Data mining in education,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 3, no. 1, 2013. [Online]. Available: http://https://doi.org/10.1002/widm.1075
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.