Relationship between construction parameters and thermal loads in a building without internal gains

Authors

  • José Alberto Díaz Angulo Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
  • Silvia Soutullo Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT https://orcid.org/0000-0001-6420-2734
  • Emanuela Giancola Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT https://orcid.org/0000-0003-2450-1494
  • José Antonio Ferrer Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT

DOI:

https://doi.org/10.17533/udea.redin.20210955

Keywords:

Energy efficiency in buildings, sensitivity analysis, multivariable construction evaluation, thermal loads

Abstract

The analysis of building characteristics indicates that there are some uncertainties influencing its energy performance: Environment, volumetry or operating conditions. It is important to have a low-cost system that performs this analysis and energy management by optimizing the coupling between production and consumption. Knowing the relationship between the annual thermal needs with different construction parameters can help to define this system and allow understanding the expected heating and cooling consumption based on easily available information. In this work, a numerical methodology has been applied to estimate the thermal loads of a building without internal gains. For this purpose, a simulation environment has been developed to execute a sensitivity analysis through the interconnection between TRNSYS 16.1 and GenOpt programs. Volumetry, building materials according to Spanish regulations and percentage of external windows are evaluated as analysis variables of the parametric study. Heating, and cooling loads have been calculated to quantify their influence: Older regulations imply higher annual loads; the increase in building height and area reduces the annual thermal loads and higher percentages of glazing on the external façades imply higher annual demands, particularly in the east and west orientations; the variation of the envelope results in the most influential factor. Finally, a statistical study has been performed to assess the annual trends: Heating trends point to more stability with two defined intervals, while cooling trends are more asymmetric.

|Abstract
= 491 veces | PDF
= 51 veces| | HTML
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

José Alberto Díaz Angulo, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Researcher, Division of Renewable Energy, Energy Efficiency in Buildings R&D Unit

Silvia Soutullo, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT

Researcher Division of Renewable Energy, Energy Efficiency in Buildings R&D Unit

Emanuela Giancola, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT

Researcher, Division of Renewable Energy, Energy Efficiency in Buildings R&D Unit

José Antonio Ferrer, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT

Head of the Unit, Division of Renewable Energy, Energy Efficiency in Buildings R&D Unit

References

U. Nations. (2016) The world’s cities in 2016 : data booklet. New York. [Online]. Available: https://digitallibrary.un.org/record/1634928?ln=es

BP. (2016, Mar. 4,) Bp annual report and form 20-f. [Online]. Available: https://on.bp.com/3yjiwZF

A. Asikainen, E. Pärjälä, M. Jantunen, J. Tuomisto, and C. E. Sabel, “Effects of local greenhouse gas abatement strategies on air pollutant emissions and on health in kuopio, finland,” Climate, vol. 5, no. 2, Jun. 19, 2017. [Online]. Available: https://doi.org/10.3390/cli5020043

Energy efficient buildings. European Comission. Accessed Ene. 25, 2018. [Online]. Available: https://bit.ly/2S72Ojr

E. performance of buildings directive, “Directive 2010/31/eu of the european parliament and of the council of 19 may 2010 on the energy performance of buildings (recast),” Official Journal of the European Union, Jun. 18, 2010. [Online]. Available: https://bit.ly/3whhN9C

S. Hallegatte, “Strategies to adapt to an uncertain climate change,” Global Environmental Change, vol. 19, no. 2, May. 2009. [Online]. Available: https://doi.org/10.1016/j.gloenvcha.2008.12.003

F. Ascione, N. Bianco, G. M. Mauro, and D. F. N. snd G. P. Vanoli, “A multi-criteria approach to achieve constrained cost-optimal energy retrofits of buildings by mitigating climate change and urban overheating,” Climate, vol. 6, no. 2, May. 8, 2018. [Online]. Available: https://doi.org/10.3390/cli6020037

M. A. R. Biswas, M. D. Robinson, and N. Fumo, “Prediction of residential building energy consumption: A neural network approach,” Energy, vol. 117, no. Parte 1, Dic. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.energy.2016.10.066

E. Giancola, C. I. M. Chicott, and M. R. H. Celemin, “Desarrollo de un modelo E-GIS DB (environment and energy geographical information system database) para apoyar iniciativas de ciudades inteligentes,” Presentado en el I Congreso Ciudades Inteligentes, Madrid, España, 2015.

D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith, “Contrasting the capabilities of building energy performance simulation programs,” Building and Environment, vol. 43, no. 4, Abr. 2008. [Online]. Available: https://doi.org/10.1016/j.buildenv.2006.10.027

S. Soutullo and et al., “Energy performance assessment of a polygeneration plant in different weather conditions through simulation tools,” Energy and Buildings, vol. 124, Jul. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.enbuild.2016.04.031

R. Zhang, P. A. Mirzaei, and B. Jones, “Development of a dynamic external CFD and BES coupling framework for application of urban neighbourhoods energy modelling,” Building and Environment, vol. 146, Dic. 2018. [Online]. Available: https://doi.org/10.1016/j.buildenv.2018.09.006

L. Tronchin, M. Manfren, and L. C. Tagliabue, “Optimization of building energy performance by means of multi-scale analysis – lessons learned from case studies,” Sustainable Cities and Society, vol. 27, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.scs.2015.11.003

R. Enríquez, M. J. Jiménez, and M. R. Heras, “Towards non-intrusive thermal load monitoring of buildings: BES calibration,” Applied Energy, vol. 191, Abr. 1, 2017. [Online]. Available: https://doi.org/10.1016/j.apenergy.2017.01.050

S. Soutullo, E. Giancola, and M. R. Heras, “Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in madrid,” Energy, vol. 152, Jun. 1, 2018. [Online]. Available: https://doi.org/10.1016/j.energy.2018.02.017

E. Asadi, M. G. da Silva, C. H. Antunes, L. Dias, and L. Glicksman, “Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application,” Energy and Buildings, vol. 81, Oct. 2014. [Online]. Available: https://doi.org/10.1016/j.enbuild.2014.06.009

A. T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based optimization methods applied to building performance analysis,” Applied Energy, vol. 113, Ene. 2014. [Online]. Available: https://doi.org/10.1016/j.apenergy.2013.08.061

R. Baños and et al., “Optimization methods applied to renewable and sustainable energy: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 4, May. 2011. [Online]. Available: https://doi.org/10.1016/j.rser.2010.12.008

J. Wright and A. Alajmi, “Efficient genetic algorithm sets for optimizing constrained building design problem,” International Journal of Sustainable Built Environment, vol. 5, no. 1, Jun. 2016. [Online]. Available: https://doi.org/10.1016/j.ijsbe.2016.04.001

GENOPT webpage, Lawrence Berkeley National Laboratory, accessed Sep. 11, 2020.

TRNSYS webpage, TRNSYS, accessed Sep. 11, 2020.

A. Alajmi and J. Wright, “The robustness of genetic algorithms in solving unconstrained building optimization problems,” presented in Proceedings of the 9th International Building Performance Simulation Association Conference, Canada, 2005.

D. Tuhus-Dubrow and M. Krarti, “Genetic-algorithm based approach to optimize building envelope design for residential buildings,” Building and Environment, vol. 45, no. 7, Jul. 2010. [Online]. Available: https://doi.org/10.1016/j.buildenv.2010.01.005

A. Hasan, M. Vuolle, and K. Sirén, “Minimisation of life cycle cost of a detached house using combined simulation and optimisation,” Building and Environment, vol. 43, no. 12, Dic. 2008. [Online]. Available: https://doi.org/10.1016/j.buildenv.2007.12.003

B. Eisenhower, Z. O’Neill, S. Narayanan, V. A. Fonoberov, and I. Mezić, “A methodology for meta-model based optimization in building energy models,” Energy and Buildings, vol. 47, Abr. 2012. [Online]. Available: https://doi.org/10.1016/j.enbuild.2011.12.001

S. Soutullo, E. Giancola, M. J. Jiménez, J. A. Ferrer, and M. N. Sánchez, “How climate trends impact on the thermal performance of a typical residential building in madrid,” Energies, vol. 13, no. 1, Ene. 3, 2020. [Online]. Available: https://doi.org/10.3390/en13010237

P. van den Brom, A. R. Hansen, K. Gram-Hanssen, A. Meijer, and H. Visscher, “Variances in residential heating consumption - importance of building characteristics and occupants analysed by movers and stayers,” Applied Energy, vol. 250, Sep. 15, 2019. [Online]. Available: https://doi.org/10.1016/j.apenergy.2019.05.078

Sisgener. CARTIF. Accessed Sep. 11, 2020. [Online]. Available: https://www.cartif.es/sisgener/

J. A. Díaz and et al., “Modelo reducido de predicción de demanda de edificios residenciales en base a parámetros meteorológicos,” in CIES2020: As Energias Renováveis na Transição Energética: Livro de Comunicações do XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar, H. Gonçalves and M. Romero, Eds., Lisboa, Portugal, 2020, pp. 1061–1068.

X. Li and et al., “Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings,” Applied Energy, vol. 258, Ene. 15, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2019.114021

J. S. Hygh, J. F. D. Carolis, D. B. Hill, and S. R. Ranjithan, “Multivariate regression as an energy assessment tool in early building design,” Building and Environment, vol. 57, Nov. 2012. [Online]. Available: https://doi.org/10.1016/j.buildenv.2012.04.021

C. J. Hopfe and J. L. M. Hensen, “Uncertainty analysis in building performance simulation for design support,” Energy and Buildings, vol. 43, no. 10, Oct. 2011. [Online]. Available: https://doi.org/10.1016/j.enbuild.2011.06.034

F. S. Westphal and R. Lamberts, “Building simulation calibration using sensitivity analysis,” in Ninth International IBPSA Conference, Canada, 2005, pp. 1331–1338.

J. Sun and T. A. Raddy, “Calibration of building energy simulation programs using the analytic optimization approach (rp-1051),” HVAC&R Research, vol. 12, no. 1, 2006. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/10789669.2006.10391173

J. C. Lam, K. K. W. Wan, and L. Yang, “Sensitivity analysis and energy conservation measures implications,” Energy Conversion and Management, vol. 49, no. 11, Nov. 2008. [Online]. Available: https://doi.org/10.1016/j.enconman.2008.05.022

W. Tian and R. Choudhary, “A probabilistic energy model for non-domestic building sectors applied to analysis of school buildings in greater london,” Energy and Buildings, vol. 54, Nov. 2012. [Online]. Available: https://doi.org/10.1016/j.enbuild.2012.06.031

W. Tian and P. de Wilde, “Uncertainty and sensitivity analysis of building performance using probabilistic climate projections: A UK case study,” Automation in Construction, vol. 20, no. 8, Dic. 2011. [Online]. Available: https://doi.org/10.1016/j.autcon.2011.04.011

A. Saltelli, M. Ratto, S. Tarantola, and F. Campolongo, “Update 1 of: Sensitivity analysis for chemical models,” Chemical Reviews, vol. 112, no. 5, Abr. 19, 2012. [Online]. Available: https://doi.org/10.1021/cr200301u

T. A. Mara and S. Tarantola, “Application of global sensitivity analysis of model output to building thermal simulations,” Building Simulation, vol. 1, Dic. 5, 2008. [Online]. Available: https://doi.org/10.1007/s12273-008-8129-5

K. J. Lomas and H. Eppel, “Sensitivity analysis techniques for building thermal simulation programs,” Energy and Buildings, vol. 19, no. 1, 1992. [Online]. Available: https://doi.org/10.1016/0378-7788(92)90033-D

V. Cheng and K. Steemers, “Modelling domestic energy consumption at district scale: A tool to support national and local energy policies,” Environmental Modelling & Software, vol. 26, no. 10, Oct. 2011.[Online]. Available: https://doi.org/10.1016/j.envsoft.2011.04.005

J. A. Díaz, S. Soutullo, E. Giancola, and J. A. Ferrer, “How the construction parameters influence the thermal loads of a building without internal gains,” in Proceedings of the III Ibero-American Conference on Smart Cities. Instituto Tecnológico de Costa Rica, 2020, pp. 166–180.

M. C. Peel, B. L. Finlayson, and T. A. McMahon, “Updated world map of the köppen-geiger climate classification,” Hydrology and Earth System Sciences, vol. 11, no. 5, Oct. 11, 2007. [Online]. Available: https://doi.org/10.5194/hess-11-1633-2007

M. de Fomento. (2020, Ene.) Documento básico HE: Ahorro de energía (CTE). Gobierno de España. [Online]. Available: https://www.codigotecnico.org/DocumentosCTE/AhorroEnergia.html

Downloads

Published

2021-09-07

How to Cite

Díaz Angulo, J. A., Soutullo, S., Giancola, E., & Ferrer, J. A. (2021). Relationship between construction parameters and thermal loads in a building without internal gains. Revista Facultad De Ingeniería Universidad De Antioquia, (105), 60–75. https://doi.org/10.17533/udea.redin.20210955