Spatial distribution of δ18O in rainwater and groundwater to identify areas of recharge in the Colombian Northwest

Authors

  • Juliana Ossa-Valencia Universidad de Antioquia
  • Teresita Betancur-Vargas Universidad de Antioquia https://orcid.org/0000-0001-8556-9981
  • Ana Karina Campillo-Pérez Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.20230926

Keywords:

Hydrogeology, isoscapes, flow, Hydrological cycle, isotope

Abstract

 The understanding of the spatiotemporal variability of the water molecule stable isotopes (δ18O and δ2H) in rain and groundwater has been used in hydrogeology to validate recharge zones. In this study, we analyzed the recharge of four aquifer systems located in northwestern Colombia. This region is characterized by highly complex topography, as the Andes Mountain range splits into three branches, two of them included in the study area. The relation in the variation of values of the δ18O‰ between Precipitation (P) and groundwater (GW) was analyzed through the arithmetic expression P/GW; when P/GW is equal or larger than 1, the recharge is direct, and values less than 1 indicate recharge from regional flows. For the purposes of this research, according to statistics criteria, values between 0.98 and 1.02 are considered as 1. It was found that on Bajo Cauca, Occidente and Urabá, the phreatic aquifers are recharged directly with rainwater or after slight evaporation processes, while the recharge of deep aquifers occur through regional flows. The Valle de Aburrá´s phreatic aquifer is also recharged from distant areas; this occurs because the surface has been impermeabilized by urban processes.  The P/GW ratio seems to be useful in identifying recharge processes in regions with higher elevation gradients. In low-lying areas, the applicability of this method should be restricted.

|Abstract
= 726 veces | PDF
= 226 veces|

Downloads

Download data is not yet available.

Author Biographies

Juliana Ossa-Valencia, Universidad de Antioquia

Contractor, Environmental Engineering

Teresita Betancur-Vargas, Universidad de Antioquia

Professor and Researcher, Engineering Department

Ana Karina Campillo-Pérez, Universidad de Antioquia

PhD. Engineering

References

P. Négrel, E. Petelet-Giraud, and R. Millot, “Tracing water cycle in regulated basin using stable δ18o–δ2h isotopes: The ebro river basin (spain),” Chemical Geology, vol. 422, Mar. 2016. [Online]. Available: https://doi.org/10.1016/j.chemgeo.2015.12.009

P. Ala-aho, C. Soulsby, O. S. Pokrovsky, S. N. Kirpotin, J. Karlsson, and et al., “Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape,” Journal of Hydrology, vol. 556, Jan. 2018. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2017.11.024

S. He and K. Richards, “Stable isotopes in monsoon precipitation and water vapour in nagqu, tibet, and their implications for monsoon moisture,” Journal of Hydrology, vol. 540, Sep. 2016. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2016.06.046

M. Kumar, A. L. Ramanathan, S. Ranjan, V. Bahadur-singh, N. Kumar, and et al., “Groundwater evolution and its utility in upper ganges-yamuna alluvial plain of northern india, india: Evidence from solute chemistry and stable isotopes,” Groundwater for Sustainable Development, vol. 7, Sep. 2018. [Online]. Available: https://doi.org/10.1016/j.gsd.2018.07.001

S. Prada, J. Virgilio-Cruz, and C. Figueira, “Using stable isotopes to characterize groundwater recharge sources in the volcanic island of madeira, portugal,” Journal of Hydrology, vol. 536, May. 2016. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2016.03.009

I. D. Clark and P. Fritz, Environmental Isotopes in Hydrogeology, 1st ed. Boca Ratón, NY: CRC Press, 1997.

A. G. West, E. C. February, and G. J. Bowen, “Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across south africa,” Journal of Geochemical Exploration, vol. 145, Oct. 2014. [Online]. Available: https://doi.org/10.1016/j.gexplo.2014.06.009

T. Keesari, D. A. Sharma, M. S. Rishi, D. Pant, H. V. Mohokar, and et al., “Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest punjab,” Applied Radiation and Isotopes, vol. 129, Nov. 2017. [Online]. Available: https://doi.org/10.1016/j.apradiso.2017.07.022

R. Sánchez-Murillo and C. Birkel, “Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region,” Geophysical Research Letters, vol. 43, no. 10, May. 11, 2016. [Online]. Available: https://doi.org/10.1002/2016GL068888

G. J. Bowen and J. B. West and J. Hoogewerff, “Isoscapes: Isotope mapping and its applications,” Journal of Geochemical Exploration, vol. 102, no. 3, 2009. [Online]. Available: https://doi.org/10.1016/j.gexplo.2009.05.001

G. J. Bowen, “Isoscapes: Spatial pattern in isotopic biogeochemistry,” Annual Review of Earth and Planetary Sciences, vol. 38, May. 30, 2010. [Online]. Available: https://doi.org/10.1146/annurev-earth-040809-152429

L. I. Wassenaar, S. L. Van-Wilgenburg, K. Larson, and K. A. Hobson, “A groundwater isoscape (δd, δ18o) for mexico,” Journal of Geochemical Exploration, vol. 102, no. 3, Jan. 24, 2009. [Online]. Available: https://doi.org/10.1016/j.gexplo.2009.01.001

H. B. Vander-Zanden, D. M. Nelson, M. B. Wunder, and T. J. Conkling, “A groundwater isoscape (δd, δ18o) for mexico,” Biological Conservation, vol. 228, Dec. 2018. [Online]. Available: https://doi.org/10.1016/j.biocon.2018.10.019

K. M. Hedman, P. A. Slater, M. A. Fort, T. E. Emerson, and J. M. Lambert, “Expanding the strontium isoscape for the american midcontinent: Identifying potential places of origin for cahokian and pre-columbian migrants,” Journal of Archaeological Science: Reports, vol. 22, Dec. 2018. [Online]. Available: https://doi.org/10.1016/j.jasrep.2018.09.027

L. M. Kootker, R. J. V. Lanen, H. Kars, and G. R. Davies, “Strontium isoscapes in the netherlands. spatial variations in 87sr/86sr as a proxy for palaeomobility,” Journal of Archaeological Science: Reports, vol. 6, Apr. 2016. [Online]. Available: https://doi.org/10.1016/j.jasrep.2016.01.015

H. Wlhelmson and T. D. Price, “Migration and integration on the baltic island of Öland in the iron age,” Science: Reports, vol. 12, Apr. 2017. [Online]. Available: https://doi.org/10.1016/j.jasrep.2017.01.031

C. Birkel, R. Helliwell, B. Thornton, S. Gibbs, P. Cooper, and et al., “Characterization of surface water isotope spatial patterns of scotland,” Journal of Geochemical Exploration, vol. 194, Nov. 2018. [Online]. Available: https://doi.org/10.1016/j.gexplo.2018.07.011

S. E. Hollins, C. E. Hughes, J. Crawford, D. I. Cendón, and K. T. Meredith, “Rainfall isotope variations over the australian continent – implications for hydrology and isoscape applications,” Science of The Total Environment, vol. 645, Dec. 2018. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2018.07.082

V. Raidla, Z. Kern, J. Parn, A. Babre, K. Erg, and et al., “A δ18o isoscape for the shallow groundwater in the baltic artesian basin,” Journal of Hydrology, vol. 542, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2016.09.004

J. Ossa, A. K. Campillo, C. Omar, and T. Betancur, “Representación espacial de zonas de recarga del agua subterránea a partir de mapas isotópicos de precipitación. caso de estudio: Valle de aburrá, colombia,” Boletín Geológio y Minero, vol. 132, no. 1-2, 2021. [Online]. Available: https://doi.org/10.21701/bolgeomin.132.1-2.007

G. J. Bowen and S. P. Good, “Incorporating water isoscapes in hydrological and water resource investigations,” Wiley Interdisciplinary Reviews, vol. 2, no. 2, Feb. 16, 2015. [Online]. Available: https://doi.org/10.1002/wat2.1069

IDEAM. (2014) Estudio nacional del agua. [Online]. Available: http://www.ideam.gov.co/web/agua/estudio-nacional-del-agua/-/document_library_display/hWSQik0LFPrw/view/125687715

T. Betancur-Vargas, D. A. García-Giraldo, A. J. Vélez-Duque, A. M. Gómez, C. Flórez-Ayala, J. Patiño, and J. A. Ortíz-Tamayo, “Aguas subterráneas, humedales y servicios ecosistémicos en colombia,” Biota Colombiana, vol. 18, no. 1, Jun. 30, 2017. [Online]. Available: https://doi.org/10.21068/c2017.v18n01a1

D. P. Santa-Arango, D. C. Martínez-Franco, and T. Betancur-Vargas, “Uso de hidroquímica e isótopos ambientales para la evaluación de la conexión hidrológica entre el agua subterránea y el humedal ciénaga colombiana. (un primer acercamiento),” Gestión y Ambiente, vol. 11, no. 12, May. 01, 2008. [Online]. Available: https://revistas.unal.edu.co/index.php/gestion/article/view/13974/14772

P. A. Palacio-B. and T. Betancur-Vargas, “Identificación de fuente y zonas de recarga a un sistema acuifero apartir de isótopos estables del agua. caso de estudio bajo cauca antioqueño,” Gestión y Ambiente, vol. 10, no. 1, May. 2007. [Online]. Available: https://www.redalyc.org/pdf/1694/169419796014.pdf

J. D. Taupin, L. E. Toro, and M. C. Vargas, “Etude géochimique et isotopique des aquifères dans la zone de maicao (colombie),” Hydrological Sciences Journal, vol. 54, no. 3, Dec. 19, 2009. [Online]. Available: https://doi.org/10.1623/hysj.54.3.538

M. C. Vélez-O and R. L. R. G., “Determinación de la carga con isótopos ambientales en los acuíferos de santa fé de antioquia,” Boletín de Ciencias de la Tierra, no. 24, Nov. 2008. [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S0120-36302008000300005&script=sci_abstract&tlng=pt

A. K. Campillo-Pérez, J. D. Taupin, N. Patris, and T. Betancur, “Uso de la geoquímica y de los isótopos estables del agua en el estudio de un sistema acuífero supercial en el complejo urbanizado andino (valle de aburrá, colombia),” Revista Peruana Geo-atmosférica RPGA, no. 4, 2015. [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S0120-36302008000300005&script=sci_abstract&tlng=pt

A. Piña, L. Donado, and T. Cramer, “Hydrogeochemical processes and isotopes analysis. study case: ”La Línea Tunnel”, colombia,” in 19th EGU General Assembly, EGU2017, proceedings from the conference held 23-28 April, Vienna, Austria, 2017. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2017EGUGA..19.2675P/abstract

J. E. Mariño-Martínez and A. Martínez-Sánchez, “Analysis of precipitation and recharge of aquifers in tota and ibagué (colombia) from stable isotopes (18o and 2h),” Revista Facultad de Ingeniería, UPTC, vol. 27, no. 47, 2018. [Online]. Available: https://revistas.uptc.edu.co/index.php/ingenieria/article/view/7752/6142

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Atlas climatológico de Colombia / Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), 1st ed. Bogotá, Colombia: Imprenta Nacional de Colombia, 2005. [Online]. Available: https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=46264

S. Valencia, D. E. Marín, D. Gómez, N. Hoyos, J. F. Salazar, and J. C. Villegas, “Spatio-temporal assessment of gridded precipitation products across topographic and climatic gradients in colombia,” Atmospheric Research, vol. 285, Feb. 05, 2023. [Online]. Available: https://doi.org/10.1016/j.atmosres.2023.106643

P. Villegas, V. Paredes, T. Betancur, J. D. Taupin, and L. E. Toro, “Groundwater evolution and mean water age inferred from hydrochemical and isotopic tracers in a tropical confined aquifer,” Hydrological Processes, vol. 32, no. 14, May. 17, 2018. [Online]. Available: https://doi.org/10.1002/hyp.13160

Área Metropolitana del Valle de Aburrá, Microzonificación y Evaluación del Riesgo Sísmico del Valle de Aburrá. Medellín, Colombia: Prográficas Ltda, 2007.

S. M. Patiño-Rojas, M. Jaramillo, C. Espinosa-Espinosa, and M. F. Arias-López, “Preferential groundwater flow directions in a pseudokarst system in colombia, south america,” Journal of South American Earth Sciences, vol. 112, no. 1, Sep. 20, 2021. [Online]. Available: https://doi.org/10.1016/j.jsames.2021.103572

T. Betancur-Vargas, C. Martínez-Uribe, E. F. García-Aristizábal, and J. F. Escobar-Martínez, “Identificación y caracterización de flujos regionales de recarga de agua a un acuífero libre,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 85, Oct-Dec 2017. [Online]. Available: https://doi.org/10.17533/udea.redin.n85a07

W. Dansgaard, “Stable isotopes in precipitation,” Tellus, vol. 16, no. 4, Dec. 15, 2016. [Online]. Available: https://doi.org/10.3402/tellusa.v16i4.8993

S. Gómez, J. D. Taupin, and J. A. Rueda, “Estudio hidrodinámico, geoquímico e isotópico de las formaciones acuíferas de la región de bucaramanga (colombia),” Revista Peruana Geo-Atmosférica RPGA, no. 4, 2015. [Online]. Available: https://tinyurl.com/y3x87cw3

G. Esquivel-Hernández, G. M. Mosquera, R. Sánchez-Murillo, A. Quesada-Román, C. Birkela, P. Crespo, and et al., “Moisture transport and seasonal variations in the stable isotopic composition of rainfall in central american and andean páramo during el niño conditions (2015–2016),” Hydrological Processes, vol. 33, no. 13, Mar. 13, 2019. [Online]. Available: https://doi.org/10.1002/hyp.13438

R. Gonfiantini, M. A. roche, J. C. Olivry, J. C. Fontes, and G. M. Zuppi, “The altitude effect on the isotopic composition of tropical rains,” Chemical Geology, vol. 181, no. 1-4, Oct. 15, 2001. [Online]. Available: https://doi.org/10.1016/S0009-2541(01)00279-0

R. Sánchez-Murillo, G. Esquivel-Hernández, J. L. Corrales-Salazar, L. Castro-Chacón, and A. M. Durán-Quesada, “Tracer hydrology of the data-scarce and heterogeneous central american isthmus,” Hydrological Processes, vol. 34, no. 11, Apr. 08, 2020. [Online]. Available: https://doi.org/10.1002/hyp.13758

Downloads

Published

2023-09-29

How to Cite

Ossa-Valencia, J., Betancur-Vargas, T., & Campillo-Pérez, A. K. (2023). Spatial distribution of δ18O in rainwater and groundwater to identify areas of recharge in the Colombian Northwest. Revista Facultad De Ingeniería Universidad De Antioquia, (113), 37–49. https://doi.org/10.17533/udea.redin.20230926