Effects of the incorporation of steel fibers with plasticizer additive in concrete
DOI:
https://doi.org/10.17533/udea.redin.20240515Keywords:
Concrete, Mechanical properties, Steel fibers, plasticizer additiveAbstract
The objective of this study is to evaluate the effect of the incorporation of steel fibers at 1%, 2%, 3%, and 4%, as a function of concrete volume plus 1% plasticizing additive as a function of cement weight for control designs of resistance 210 kg/cm² and 280 kg/cm², on compressive strength, tensile strength, flexural strength, and modulus of elasticity. Steel fibers with a length of 60 mm type KF 80/60 CH were used. The addition of the steel fiber did not significantly reduce the workability; however, the temperature showed a reduction with respect to the standard concrete specimen. The results showed that for the 210 kg/cm² and 280 kg/cm² concrete control designs, the optimum proportions were 2% and 4% of steel fibers, which increased the compressive strength, tensile strength, and modulus of elasticity by 14.76%, 14.93% and 1.63% for the 210 kg/cm² strength control design and for the 280 kg/cm² strength control design increased by 16.29%, 16.95% and 13.75% with respect to the standard concrete strength. The results of this study show that steel fibers with a specific dosage of superplasticizer can be used for structural and non-structural concrete, being significantly influential in improving mechanical properties.
Downloads
References
S. K. Nayar y R. Gettu, "Mechanistic-empirical design of fibre reinforced concrete (FRC) pavements using inelastic analysis," Sadhana - Academy Proceedings in Engineering Sciences, vol. 45, nº 19, pp. 1-7, 2020.
A. Leemann et al., "Impact of admixtures on the plastic shrinkage cracking of self-compacting concrete," Cement and Concrete Composites, vol. 46, pp. 1-7, 2014.
M. Chilwesa et al., "Shrinkage induced edge curling and debonding in slab elements reinforced with bonded overlays: Influence of fibers and SRA," Cement and Concrete Composites, vol. 102, pp. 105-115, 2019.
Ó. Heredia, "Evaluación de edificios de acero tras sismos fuertes," CMIC - Revista Mexicana de la Construcción., pp. 41-48, 2018.
A. Soto y F. Tehrani, "An investigation of crack propagation in steel fiber-reinforced composite beams," Periodica Polytechnica Civil Engineering, vol. 62, nº 4, pp. 956-962, 2018.
E. Becker, "Patologías habituales en el hormigón armado," Clarín ARQ, 2016.
A. Castañeda y Y. Bravo, "Overview of the Structural Behavior of Columns, Beams, Floor Slabs and Buildings during the Earthquake of 2016 in Ecuador," Revista ingeniería de construcción, vol. 32, nº 3, pp. 157-172, 2017.
S. Angel et al., "Comentarios relativos al tipo de falla en los muros de concreto de edificios chilenos en el sismo del 27 de febrero de 2010," Concreto y cemento. Investigación y desarrollo, vol. 3, nº 1, pp. 36-48, 2011.
L. Gallo et al., "Comportamiento del concreto reforzado con fibras de acero zp-306 sometido a esfuerzos de compresión," Ciencia e Ingeniería Neogranadina, vol. 23, nº 1, pp. 117-133, 2013.
D. Yoo, et al., "Comparative low-velocity impact response of textile-reinforced concrete and steel-fiber-reinforced concrete beams," Journal of Composite Materials, vol. 50, nº 17, pp. 2421-2431, 2016.
J. Carrillo y D. Silva Páramo, "Flexural Tests of Concrete Slabs-on-Ground Reinforced with Steel Fibers," Ingeniería, Investigación y Tecnología, vol. 17, nº 3, pp. 317-330, 2015.
ACI 318S-14, "Requisitos de Reglamento para Concreto Estructural," Comité ACI 318, 2015.
J. Moya y L. Lara, "Análisis de las propiedades físicas y mecánicas del hormigón elaborado con fibras de acero reciclado," Ingenio, vol. 1, nº 2, p. 5–14, 2019.
A. J. Araujo Novoa, "Fibras de acero y polipropileno en la resistencia a la compresión del concreto, Trujillo2018," Perú, 2018.
J. Carrillo et al., "Desempeño de losas de concreto sobre terreno reforzadas con malla electrosoldada o fibras de acero," Ingeniería, Investigación y Tecnología, vol. 17, pp. 499-510, 2016.
P. D. Nieuwoudt et al., "The response of cracked steel fibre reinforced concrete under various sustained stress levels on both the macro and single fibre level," Construction and Building Materials, vol. 156, pp. 828-843, 2017.
B. Abad et al., "Shear capacity of steel fibre reinforced concrete beams," Concrete - Innovations in Materials, pp. 1710-1717, 2019.
Y. Abbas y M. Khan, "Influence of fiber properties on shear failure of steel fiber reinforced beams without web reinforcement: ANN modeling," Latin American Journal of Solids and Structures, vol. 13, nº 8, pp. 1483-1498, 2016.
T. Yuan et al., "Shear Capacity Contribution of Steel Fiber Reinforced High-Strength Concrete Compared with and without Stirrup," International Journal of Concrete Structures and Materials, vol. 14, nº 1, 2020.
M. Farfán et al., "Fibras de acero en la resistencia a la compresión del concreto," Revista Gaceta Técnica, vol. 20, nº 2, p. 11, 10 Octubre 2018.
E. Flores Utos, "Mejoramiento de la resistencia del concreto adicionando fibras de acero en la Av. Túpac Amaru, distrito de Independencia, Lima - 2018," Perú, 2018.
J. Ran et al., "Mechanical properties of concrete reinforced with corrugated steel fiber under uniaxial compression and tension," Structures, pp. 1890-1902, December 2021.
D. Ñaupas y D. Sosa, "Comportamiento mecánico del concreto reforzados con fibra de acero en el análisis estructural de placas en el proyecto de ampliación del centro médico San Conrado en los Olivos, Lima - Perú," Perú, 2019.
ASTM C39 / C39M - 05, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens," Copyright ASTM International, United States, 2006.
ASTM C-496, "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens," Copyright ASTM International, United States, 2004.
ASTM C78-02, "Método de ensayo normalizado para determinar la resistencia a la flexión del hormigón (Usando una viga simple con carga en los tercios)", USA: West, 2002, p. 4.
ASTM C469-94, "Módulo de elasticidad estático y relación de poisson del concreto en compresión," ASTM International, West Conshohocken, 1994.
NTP 400.011, "AGREGADOS. Definición y clasificación de agregados para uso en morteros y hormigones (concretos)," INDECOPI-CNB, PERÚ, 2008.
A. Zapata et al., "Hormigón con aditivos reductores de agua," Investigación, p. 4, 2006.
ASTM C1116, "Standard Specification for Fiber-Reinforced Concrete," ASTM International, Estados Unidos, 2003.
ASTM C31, "Preparación y Curado de Especímenes de Ensayo de Concreto en la Obra," USA: ASTM International, 2012, p. 9.
ASTM - C1064, "Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete," West Conshohocken: ASTM International, 2012, p. 3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.