Microbial community evolution in the biofilm attached to sponge carriers in pulp mill effluent treatment

Authors

DOI:

https://doi.org/10.17533/udea.redin.20240730

Keywords:

Bioreactors, Moving Bed Biofilm Reactor, Industrial effluent, Wastewater treatment, Gene sequencing

Abstract

This study investigates the evolution of the biofilm matrix responsible for treating effluent from a pulp mill and identifies the microbial community by 16S rRNA gene sequencing. In addition, a biocarrier promising a functional structure with better specific features for biofilm formation than traditional polyurethane carriers was explored. The average removal efficiencies were 43.7% for chemical oxygen demand (COD) and 62.7% for biochemical oxygen demand (BOD5). The color increased during the treatment, indicating anoxic zones being formed in the inner part of this type of carrier. Periodic micrographs showed the evolution of extracellular polymeric substances and materials like fungi and bacteria adhered to the carriers. Genetic sequencing confirmed the presence of Bacillus sp. and Paenibacillus glucanolyticus, species with the potential to degrade and discolor pulp industrial effluents. Results offer a potential basis to enhance treatment facilities of pulp and paper mills based on microbial activities.

|Abstract
= 120 veces | PDF
= 58 veces|

Downloads

Download data is not yet available.

Author Biographies

Emeline Melchiors, Universidade Tecnológica Federal do Paraná

Doctor en Ingeniería Civil. Departamento de Construcción Civil

Camila Peitz, Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Química a Biologia, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental

Jackeline Valendolf-Nunes, Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Química e Biologia, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental

Mac Wendell Barbosa da Silva, Universidade Tecnológica Federal do Paraná

Estudiante Departamento Acadêmico de Química e Biologia

Izadora Cervelin-Flôr, Universidade Federal do Paraná

Maestría. Departamento de Patologia Básica, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia

Vânia Aparecida-Vicente, Universidade Federal do Paraná

Departamento de Patologia Básica, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia

Claudia Regina Xavier, Universidade Tecnológica Federal do Paraná

PhD, professor. Departamento Acadêmico de Química e Biologia, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental

References

M. Kamali, S. A. Alavi-Borazjani, Z. Khodaparast, M. Khalaj, A. Jahanshahi, E. Costa, and et. al, “Additive and additive-free treatment technologies for pulp and paper mill effluents: Advances, challenges and opportunities,” Water Resources Industry, vol. 21, Jun. 2019. [Online]. Available: https://doi.org/10.1016/j.wri.2019.100109

O. Ashrafi, L. Yerushalmi, and F. Haghighat, “Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission,” Journal of Environmental Management, vol. 158, Aug. 2015. [Online]. Available: https://doi.org/10.1016/j.jenvman.2015.05.010

N. Buyukkamaci and E. Koken, “Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry,” Science of the Total Environment, vol. 408, no. 24, Nov. 2010. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2010.08.045

R. Chandra, P. Sharma, S. Yadav, and S. Tripathi, “Biodegradation of endocrine-disrupting chemicals and residual organic pollutants of pulp and paper mill effluent by biostimulation,” Frontiers in Microbiology, vol. 9, Apr. 2018. [Online]. Available: https://doi.org/10.3389/fmicb.2018.00960

D. Balabanič, M. Filipič, A. K. Klemenčič, and B. Žegura, “Raw and biologically treated paper mill wastewater effluents and the recipient surface waters: Cytotoxic and genotoxic activity and the presence of endocrine disrupting compounds,” Science of the Total Environment, vol. 574, Jan. 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2016.09.030

A. Barwal and R. Chaudhary, “To study the performance of biocarriers in moving bed biofilm reactor (mbbr) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: A review,” Reviews in Environmental Science and Biotechnology, vol. 13, Sep. 2014. [Online]. Available: https://doi.org/10.1007/s11157-014-9333-7

W. Wang, Y. Wu, and C. Zhang, “High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-tca in groundwater,” Bioprocess and Biosystems Engineering, vol. 40, Nov. 2016. [Online]. Available: https://doi.org/10.1007/s00449-016-1706-6

M. Delnavaz, B. Ayati, and H. Ganjidoust, “Prediction of moving bed biofilm reactor (mbbr) performance for the treatment of aniline using artificial neural networks (ann),” Journal of Hazardous Materials, vol. 179, no. 1-3, Jul. 2010. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2010.03.069

Y. Zhu, Y. Zhang, H. Ren, J. Geng, K. Xu, H. Huang, and et al., “Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor,” Bioresource Technology, vol. 180, Mar. 2015. [Online]. Available: https://doi.org/10.1016/j.biortech.2015.01.006

H. C. Flemming and J. Wingender, “The biofilm matrix,” Nature Reviews Microbiology, vol. 8, Jul. 2010. [Online]. Available: https://doi.org/10.1038/nrmicro2415

L. Deng, W. Guo, H. Hao-Ngo, X. Zhang, X. C. Wang, and Q. Z. et al., “New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system,” Bioresource Technology, vol. 208, May. 2016. [Online]. Available: https://doi.org/10.1016/j.biortech.2016.02.057

H. Sakuma, “Paper mill wastewater treatment by moving bed biofilm reactor using sponge media,” Japan Tappi J., vol. 58, Apr. 2004. [Online]. Available: https://doi.org/10.2524/jtappij.58.1361

N. C. Inc., “Aquaporousgel catalogue 2022,” Oct. 2022, accessed on: October 13, 2022. [Online]. Available: https://www.nisshinbo-chem.co.jp/english/products/apgbcn/apg.html

H. Ødegaard, “Innovations in wastewater treatment: The moving bed biofilm process,” Water Science Technology, vol. 53, no. 9, Apr. 2006. [Online]. Available: https://doi.org/10.2166/wst.2006.284

A. APHA and WEF, Standard methods for the examination of water and wastewater, 22nd ed. American Public Health Association, 2012.

S. Chamorro and et al., “Aerobic removal of stigmasterol contained in kraft mill effluents,” Electron. J. Biotechnol., vol. 12, no. 2, Apr. 2009. [Online]. Available: http://dx.doi.org/10.4067/S0717-4582009000200001

G. C. Diniz, Roteiro de aulas práticas: Bacteriologia, Departamento de Parasitologia, Microbiologia e Imunologia, 2018. [Online]. Available: https://tinyurl.com/ydrew6au

A. E. M. Stinghen, C. A. Albini, and H. A. P. H. M. Souza, “Coloração de gram: como fazer, interpretar e padronizar,” 2002. [19] J. V. Nunes, M. W. Barbosa, G. H. Couto, I. C. Flor, V. A. Vicente, and J. D. de Almeida et al., “Bacterial diversity in aerated facultative lagoon treating kraft cellulose effluent with bioaugmentation,” BioResources, vol. 17, no. 4, Apr. 2022. [Online]. Available: https://doi.org/10.15376/biores.17.4.6556-6568

V. A. Vicente, D. Attili-Angelis, M. R. Pie, F. Queiroz-Telles, L. M. Cruz, M. J. Najafzadeh, and et al., “Environmental isolation of black yeast-like fungi involved in human infection,” Westerdijk Fungal Biodiversity Institute, vol. 61, no. 1, Jun. 2008. [Online]. Available: https://doi.org/10.3114/sim.2008.61.14

N. C. for Biotechnology Information (NCBI), “Basic local alignment search tool (blast),” 2022, accessed on: February 21, 2022. [Online]. Available: https://blast.ncbi.nlm.nih.gov/Blast.cgi

D. Pokhrel and T. Viraraghavan, “Treatment of pulp and paper mill wastewater - a review,” Sci. Total Environ., vol. 333, no. 1, Oct. 2004. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2004.05.017

C. Peitz and C. R. Xavier, “Evaluation of aerated lagoon modified with spongy support medium treating kraft pulp mill effluent,” Revista Facultad Ingeniería Universidad de Antioquia, no. 92, Jun. 2019. [Online]. Available: https://doi.org/10.17533/udea.redin.20190725

M. Kamali and Z. Khodaparast, “Review on recent developments on pulp and paper mill wastewater treatment,” Ecotoxicology and Environmental Safety, vol. 114, Apr. 2015. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2014.05.005

C. B. Milestone, R. R. Fulthorpe, and T. R. Stuthridge, “The formation of colour during biological treatment of pulp and paper wastewater,” Water Sci. Technol., vol. 3, no. 50, Aug. 2004. [Online]. Available: https://doi.org/10.2166/wst.2004.0169

M. N. Cabrera, Biological Wastewater Treatment and Resource Recovery. Chapter metrics overview, Mar. 2017. [Online]. Available: https://doi.org/http://dx.doi.org/10.5772/67537

S. Chamorro, G. Pozo, M. Jarpa, V. Hernandez, J. Becerra, and G. Vidal, “Monitoring endocrine activity in kraft mill effluent treated by aerobic moving bed bioreactor system,” Water Sci.Technol., vol. 1, no. 62, Jul. 2010. [Online]. Available: https://doi.org/10.2166/wst.2010.297

C. A. Villamar, M. Jarpa, J. Decap, and G. Vidal, “Aerobic moving bed bioreactor performance: A comparative study of removal efficiencies of kraft mill effluents from pinus radiata and eucalyptus globulus as raw material,” Water Science & Technology, vol. 3, no. 59, Feb. 2009. [Online]. Available: https://doi.org/10.2166/wst.2009.002

A. R. Fariza, A. Zuraida, and I. Sopyan, “Application of low cost polyurethane (pu) foam for fabricating porous tri-calcium phosphate (tcp),” Journal of Biomimetics, Biomaterials and Tissue Engineering, vol. 8, Nov. 2010. [Online]. Available: https://doi.org/10.4028/www.scientific.net/JBBTE.8.1

K. B. Solmaz and et al., “Characterization and production of extracellular polysaccharides (eps) by bacillus pseudomycoides u10,” Environments, vol. 5, no. 6, May. 2018. [Online]. Available: https://doi.org/10.3390/environments5060063

M. Dezotti, G. Lippel, and J. P. Bassin, Advanced biological processes for wastewater treatment: Emerging, consolidated technologies and introduction to molecular techniques, 1st ed. Springer Cham, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-58835-3

Q. Ma and R. Yang, “Alkaline xylanase produced by Trichoderma reesei: Application in waste paper pulp bleaching,” BioResources, vol. 10, no. 4, Apr. 2015. [Online]. Available: https://doi.org/10.15376/biores.10.4.8048-8057

A. Wang and G. J. Ash, “Whole genome phylogeny of bacillus by feature frequency profiles (ffp),” scientific reports, vol. 5, no. 13644, Sep. 2015. [Online]. Available: https://doi.org/10.1038/srep13644

M. Sonkar, M. Kumar, D. Dutt, and V. Kumar, “Treatment of pulp and paper mill effluent by a novel bacterium bacillus sp.iitrdvm-5 through a sequential batch process,” Biocatalysis and Agricultural Biotechnology, vol. 20, Jul. 2019. [Online]. Available: https://doi.org/10.1016/j.bcab.2019.101232

M. Sonkar, V. Kumar, and D. Dutt, “A novel sequence batch treatment of wastewater using bacillus sp. iitrdvm-5 mixing with paper mill and sewage sludge powders,” Environmental Technology & Innovation, vol. 21, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.eti.2020.101288

S. Angural, I. Bala, A. Kumar, D. Kumar, S. Jassal, and N. Gupta, “Bleach enhancement of mixed wood pulp by mixture of thermo-alkali-stable xylanase and mannanase derived through co-culturing of alkalophilic bacillus sp. ng-27 and bacillus nealsonii pn-11.” Heliyon, vol. 7, no. 1, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.heliyon.2020.e05673

P. Sharma, S. Tripathi, P. Chaturvedi, D. Chaurasia, and R. Chandra, “Newly isolated bacillus sp. ps-6 assisted phytoremediation of heavy metals using phragmites communis: Potential application in wastewater treatment,” Bioresource Technology, vol. 320, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.biortech.2020.124353

R. Chandra, R. Singh, and S. Yadav, “Effect of bacterial inoculum ratio in mixed culture for ecolourization and detoxification of pulp paper mill effluent Journal Chemical Technology Biotechnology, vol. 87, no. 3, Jan. 2012. [Online]. Available: https://doi.org/10.1002/jctb.2758

T. Karichappan, S. Venkatachalam, and P. M. Jeganathan, “Analysis of efficiency of bacillus subtilis to treat bagasse based paper and pulp industry wastewater - a novel approach,” Journal of the Korean Chemical Society, vol. 58, no. 2, Apr. 2014. [Online]. Available: https://doi.org/10.5012/jkcs.2014.58.2.198

M. S. Gandhi and C. Udayasoorian, “Immobilization of bacillus subtilis on polyurethane foam for the treatment of pulp and paper mill effluent,” Jornal of Pure Applied Microbiology, vol. 6, no. 3, Sep. 2012. [Online]. Available: https://tinyurl.com/mujfsd73

J. G. Gouveia, A. L. dos Silva, E. C. dos Santos, E. S. Martins, and A. M. Lopez, “Optimization of bioflocculant production by bacillus spp. from sugarcane crop soil or from sludge of the agroindustrial effluent,” Brazilian Journal of Chemical Engineering, vol. 36, no. 2, Jun. 2019. [Online]. Available: https://doi.org/10.1590/0104-6632.20190362s20180360

S. Zainith, D. Purchase, G. Dattatraya-Saratale, L. F. Ferreira, M. Bilal, and R. Naresh-Bharagava, “Isolation and characterization of lignin-degrading bacterium bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential,” Biotech., vol. 9, no. 92, Feb. 2019. [Online]. Available: https://doi.org/10.1007/s13205-019-1631-x

A. Raj, S. Kumar, I. Haq, and S. Kumar-Singh, “Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic paenibacillus sp,” Ecological Engineering, vol. 71, Oct. 2019. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2014.07.002

D. M. Brown, A. M. Grunden, and J. J. Pawlak, “Statistical optimization of black liquor-containing media for growth and lactic acid production by paenibacillus glucanolyticus slm1,” Bioresource Technology Reports, vol. 13, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.biteb.2021.100629

S. L. Mathews, J. Pawlak, and A. M. Grunden, “Bacterial biodegradation and bioconversion of industrial lignocellulosic streams,” Applied Microbiology and Biotechnology, vol. 99, Feb. 2015. [Online]. Available: https://doi.org/10.1007/s00253-015-6471-y

S. L. Mathews and J. Pawlak and A. M. Grunden, “Draft genome sequences of two strains of paenibacillus glucanolyticus with the ability to degrade lignocellulose,” Genome Announcements, vol. 4, no. 3, Jun. 2016. [Online]. Available: https://doi.org/10.1128/genomea.00423-16

Downloads

Published

2024-07-19

How to Cite

Melchiors, E., Peitz, C., Valendolf-Nunes, J., Barbosa da Silva, M. W., Cervelin-Flôr, I., Aparecida-Vicente, V., & Xavier, C. R. (2024). Microbial community evolution in the biofilm attached to sponge carriers in pulp mill effluent treatment. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20240730

Issue

Section

Research paper