Gentle remediation options for DDT- and HCH-contaminated soil

Authors

DOI:

https://doi.org/10.17533/udea.redin.20241143

Keywords:

Aerobic conditions, Anaerobic conditions, Bioaugmentation, Biostimulation, Persistent organic pollutants (POPs), Vermiremediation

Abstract

Gentle remediation options (GROs) such as vermiremediation have not been applied in Colombian soils with DDT and HCH yet, while bioaugmentation and biostimulation under anaerobic and/or aerobic conditions have been successfully implemented. However, it is important to determine under which of the latter conditions the assessed consortium performs better. This research evaluated vermiremediation and bioaugmentation under anaerobic and/or aerobic conditions, assisted with biostimulation, in a DDT- and HCH-contaminated soil. Bacteria were isolated from the contaminated soil and used for bioaugmentation. Two GROs were conducted for 60 days: 1) vermiremediation by Eisenia foetida without/with biostimulation with compost from organic waste; 2) bioaugmentation of a Proteobacteria and Firmicutes consortium under anaerobic and/or aerobic conditions, and biostimulation with the compost. Finally, the removals determined the efficiency of each treatment. In the first GRO, all the earthworms died by intoxication after 48 h of experimentation. In the second GRO, the highest removals were obtained with the anaerobic treatment: 27% 4,4'-DDT, 52% 4,4'-DDE, 58% 4,4'-DDD, 72% α-HCH, 35% β-HCH, 92% γ-HCH, and 23% δ-HCH. The results indicate that vermiremediation is not feasible for restoring soils with these pollutants at the studied levels. On the contrary, although the synergy between bioaugmentation and biostimulation represents a promising alternative, it is crucial to conduct longer evaluations of the proposed treatments to better understand their effects on the decontamination of soils with DDT and HCH.

|Abstract
= 191 veces | PDF
= 64 veces|

Downloads

Download data is not yet available.

Author Biographies

María Camila Portilla-Saldarriaga, Universidad Santo Tomás

Environmental Engineer

Stiven Camilo Dueñas-García, Universidad Santo Tomás

Environmental Engineer

Inés Hernández-Celi, Universidad Santo Tomás

Full-Time Professor, Department of Basic Sciences

Martha Jhoana Estévez-Gómez, Universidad Santo Tomás

Professor, Environmental Engineering

References

S. Miyagawa, T. Sato, and T. Iguchi, “Dichlorodiphenyltrichloroethane,” in Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research, Y. Takei, H. Ando, and K. Tsutsui, Eds. Oxford, U.K.: Academic Press, 2016. [Online]. Available: https://doi.org/10.1016/B978-0-12-801028-0.00242-7

G. Chen, “Hexachlorocyclohexanes including lindane,” in Encyclopedia of Toxicology, 3rd ed., P. Wexler, Ed. London, U.K.: Academic Press, 2014, vol. 2. [Online]. Available: https://doi.org/10.1016/B978-0-12-386454-3.00152-4

E. J. Mrema, C. Colosio, and F. M. Rubino, “Pesticide residues: Organochlorines,” in Encyclopedia of Food Safety, Y. Motarjemi, Ed. San Diego, CA, USA: Academic Press, 2014, vol. 3. [Online]. Available: https://doi.org/10.1016/B978-0-12-378612-8.00238-9

M. del P. Cabildo Miranda, M. del P. Cornago Ramírez, C. E. León, S. E. Santos, C. L. García, and D. S. del Castillo, Bases Químicas del Medio Ambiente. Madrid, Spain: Univ. Nac. Educ. Distancia, 2013.

N. Garg, P. Lata, S. Jit, N. Sangwan, A. Kumar-Singh et al., “Laboratory and field scale bioremediation of hexachlorocyclohexane (hch) contaminated soils by means of bioaugmentation and biostimulation,” Biodegradation, vol. 27, no. 2–3, Jun. 2016. [Online]. Available: https://doi.org/10.1007/s10532-016-9765-6

Secretariat of the Stockholm Convention, Stockholm Convention on Persistent Organic Pollutants (POPs). Geneva, Switzerland: United Nations, 2020. [Online]. Available: http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx

D. W. Sparling, Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants. London, U.K.: Academic Press, 2016.

X. Liu, H. Huang, D. Huang, K. Zhong, Q. Rong et al., “Enhanced biodegradation of hexachlorocyclohexane in soil by application of exogenous amendments,” Water Air Soil Pollut., vol. 232, no. 8, Aug. 2021. [Online]. Available: https://doi.org/10.1007/s11270-021-05273-2

I. A. Mirsal, Soil Pollution: Origin, Monitoring Remediation, 2nd ed. Berlin, Germany: Springer-Verlag, 2008. [Online]. Available: https://doi.org/10.1007/978-3-540-70777-6

Ministerio de Ambiente y Desarrollo Sostenible, “Plaguicidas cop: Aspectos básicos,” Bogotá, D.C., Colombia, 2017. [Online]. Available: https://quimicos.minambiente.gov.co/wp-content/uploads/2021/05/Cartilla_Plaguicidas_COP_2017.pdf

Ministerio de Ambiente, Vivienda y Desarrollo Territorial and Investigación y Desarrollo Agrícola Experimental - PERPAR, “Inventario nacional de existencias de plaguicidas cop, colombia, 2006,” Bogotá, D.C., Colombia, 2007, accessed: Mar. 26, 2023. [Online]. Available: https://quimicos.minambiente.gov.co/wpcontent/uploads/2021/05/Inventario_PlaguicidasCOP_2007.pdf

L. Joseph, M. K. S. Rajesh, P. S. R. R. Pradeep, R. K. Gupta, R. N. M. Shashidhar, and N. K. Jha, “Organochlorine pesticides in the soils of cardamom hill reserve (chr), kerala, india: Geo spatial distribution, ecological and human health risk assessment,” Environ. Chemistry Ecotoxicol., vol. 2, pp. 1–11, 2020. [Online]. Available: https://doi.org/10.1016/j.enceco.2020.01.001

Y. Kang, Q. Zhang, H. Xie, Y. Zhai, L. Li, X. Yu, and Y. Zheng, “First report of organochlorine pesticides (ocps) in coral tissues and the surrounding air-seawater system from the south china sea: Distribution, source, and environmental fate,” Chemosphere, vol. 286, no. 2, 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2021.131711

J. A. Racero-Casarrubia, J. B. Correa, J. Marrugo-Negrete, and J. J. Pinedo-Hernández, “Plaguicidas organoclorados en murciélagos (chiroptera) asociados al bosque húmedo tropical en córdoba, colombia,” Caldasia, vol. 43, no. 2, pp. 320–330, 2021. [Online]. Available: https://doi.org/10.15446/caldasia.v43n2.84862

S. Tyagi, M. Siddarth, B. K. Mishra, B. D. Banerjee, A. J. Urfi, and S. V. Madhu, “High levels of organochlorine pesticides in drinking water as a risk factor for type 2 diabetes: A study in north india,” Environ. Pollut., vol. 271, 2021. [Online]. Available: https://doi.org/10.1016/j.envpol.2020.116287

A. K. Patel, R. R. Singhania, F. P. J. B. Albarico, A. Pandey, C.-W. Chen, and C.-D. Dong, “Organic wastes bioremediation and its changing prospects,” Sci. Total Environ., vol. 824, 2022. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2022.153889

S. I. Singh, S. Singh, Bhawana, and A. P. Vig, Earthworm-assisted bioremediation of agrochemicals. Oxford, U.K.: Butterworth-Heinemann, 2020, pp. 307–327. [Online]. Available: https://doi.org/10.1016/B978-0-08-103017-2.00013-1

C. Abbes, A. Mansouri, N. Werfelli, and A. Landoulsi, “Aerobic biodegradation of ddt by Advenella kashmirensis and its potential use in soil bioremediation,” Soil Sediment Contam.: Int. J., vol. 27, no. 6, pp. 455–468, 2018. [Online]. Available: https://doi.org/10.1080/15320383.2018.1485629

M. Kopytko, S. N. Correa-Torres, and M. J. Estévez-Gómez, “Biodegradación estimulada de los suelos contaminados con pesticidas organoclorados,” Rev. Invest. Agrar. Ambient., vol. 8, no. 1, pp. 119–130, 2017. [Online]. Available: https://doi.org/10.22490/21456453.1843

E. E. Raimondo, J. D. Aparicio, A. L. Bigliardo, M. S. Fuentes, and C. S. Benimeli, “Enhanced bioremediation of lindane-contaminated soils through microbial bioaugmentation assisted by biostimulation with sugarcane filter cake,” Ecotoxicol. Environ. Saf., vol. 190, 2020. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2019.110143

V. Srivastava, T. Srivastava, and M. S. Kumar, “Fate of the persistent organic pollutant (pop) hexachlorocyclohexane (hch) and remediation challenges,” Int. Biodeterior. Biodegradation, vol. 140, 2019. [Online]. Available: https://doi.org/10.1016/j.ibiod.2019.03.004

M. A. Malla, A. Dubey, A. Kumar, and S. Yadav, “Metagenomic analysis displays the potential predictive biodegradation pathways of the persistent pesticides in agricultural soil with a long record of pesticide usage,” Microbiol. Res., vol. 261, 2022. [Online]. Available: https://doi.org/10.1016/j.micres.2022.127081

J. Foght, T. April, K. Biggar, and J. Aislabie, “Bioremediation of ddt-contaminated soils: A review,” Bioremediation J., vol. 5, no. 3, 2001. [Online]. Available: https://doi.org/10.1080/20018891079302

Z. Shi, J. Liu, Z. Tang, Y. Zhao, and C. Wang, “Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives,” Appl. Soil Ecol., vol. 147, 2020. [Online]. Available: https://doi.org/10.1016/j.apsoil.2019.103377

Z. Usmani, R. Rani, P. Gupta, and M. N. V. Prasad, Vermiremediation of agrochemicals. Oxford, U.K.: Butterworth-Heinemann, 2020, pp. 329–367. [Online]. Available: https://doi.org/10.1016/B978-0-08-103017-2.00015-5

J. D. Aparicio, A. S. Salazar, M. C. Pérez, and A. D. Silva, “Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies,” Environ. Res., vol. 194, 2021. [Online]. Available: https://doi.org/10.1016/j.envres.2020.110666

R. G. Lacalle, A. M. D. L. Torre, E. A. Mendoza, and L. M. Trujillo, “Gentle remediation options for soil with mixed chromium (vi) and lindane pollution: Biostimulation, bioaugmentation, phytoremediation and vermiremediation,” Heliyon, vol. 6, no. 8, 2020. [Online]. Available: https://doi.org/10.1016/j.heliyon.2020.e04550

Z. Lin, X.-M. Li, Y.-T. Li, D.-Y. Huang, J. Dong, and F.-B. Li, “Enhancement effect of two ecological earthworm species (eisenia foetida and amynthas robustus e. perrier) on removal and degradation processes of soil ddt,” J. Environ. Monit., vol. 14, no. 6, 2012. [Online]. Available: https://doi.org/10.1039/c2em30160a

T. M. Córdoba, “Eficiencia del lombricompostaje en la biorremediación de suelos degradados por la minería a cielo abierto en el municipio de unión panamericana, departamento del chocó,” Master’s thesis, Univ. Manizales, 2016. [Online]. Available: https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/2929

I. C. Zapata, L. Martínez, E. Posada, M. E. González, and J. F. Saldarriaga, “Efectos de la lombriz roja californiana (eisenia foetida), sobre el crecimiento de microorganismos en suelos contaminados con mercurio de segovia, antoquia,” Cienc. Ing. Neogranadina, vol. 27, no. 1, 2017. [Online]. Available: https://doi.org/10.18359/rcin.1911

Z. Lin, L. Zhang, H. Liu, W. Chen, and Y. Li, “Enhancing pentachlorophenol degradation by vermicomposting associated bioremediation,” Ecol. Eng., vol. 87, 2016. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2015.12.004

R. W. Ammeri, S. Y. Zhang, L. K. Wang, and J. Z. Li, “Combined bioaugmentation and biostimulation techniques in bioremediation of pentachlorophenol contaminated forest soil,” Chemosphere, vol. 290, 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2021.133359

T. M. Phillips, A. G. Seech, H. Lee, and J. T. Trevors, “Biodegradation of hexachlorocyclohexane (hch) by microorganisms,” Biodegradation, vol. 16, no. 4, 2005. [Online]. Available: https://doi.org/10.1007/s10532-004-2413-6

Q. Liang, M. Lei, T. Chen, J. Yang, X. Wan, and S. Yang, “Application of sewage sludge and intermittent aeration strategy to the bioremediation of ddt- and hch-contaminated soil,” J. Environ. Sci., vol. 26, no. 8, 2014. [Online]. Available: https://doi.org/10.1016/j.jes.2014.06.007

M. Siedt, A. Schäffer, K. E. C. Smith, M. Nabel, M. Roß-Nickoll, and J. T. van Dongen, “Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides,” Sci. Total Environ., vol. 751, 2021. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2020.141607

B. Betancur-Corredor, N. J. Pino, S. Cardona, and G. A. Peñuela, “Evaluation of biostimulation and tween 80 addition for the bioremediation of long-term ddt-contaminated soil,” J. Environ. Sci., vol. 28, 2015. [Online]. Available: https://doi.org/10.1016/j.jes.2014.06.044

J. W. Lanfranco, A. E. Pellegrini, and V. M. Cattani, Contenidos de Edafología: Génesis, Evolución y Propiedades Físico Químicas del Suelo. La Plata, Argentina: Editorial Univ. Nac. La Plata, 2014. [Online]. Available: http://sedici.unlp.edu.ar/handle/10915/37325

L. M. Thompson and F. R. Troeh, Los Suelos y su Fertilidad, 4th ed. Barcelona, Spain: Editorial Reverté, 1982.

R. M. Atlas and R. Bartha, Ecología Microbiana y Microbiología Ambiental, 4th ed. Madrid, Spain: Pearson Educación, 2002.

D. Kroetsch and C. Wang, Particle Size Distribution, 2nd ed. Boca Raton, FL, USA: CRC Press, 2008, pp. 713–725. [Online]. Available: https://doi.org/10.1201/9781420005271

Instituto Colombiano de Normas Técnicas y Certificación, “Calidad del suelo. determinación de la conductividad eléctrica, NTC 5596,” Bogotá, D.C., Colombia, Mar. 2008.

Instituto Colombiano de Normas Técnicas y Certificación, “Calidad del suelo. determinación del ph, NTC 5264,” Bogotá, D.C., Colombia, Mar. 2008.

Secretaría de Medio Ambiente y Recursos Naturales, “Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. estudios, muestreo y análisis, NOM-021-RECNAT-2000,” Ciudad de México, México, Dec. 2002. [Online]. Available: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf

G. Bou, A. Fernández-Olmos, C. García, J. A. Sáez-Nieto, and S. Valdezate, “Métodos de identificación bacteriana en el laboratorio de microbiología,” Enferm. Infec. Microbiol. Clin., vol. 29, no. 8, Oct. 2011. [Online]. Available: https://doi.org/10.1016/j.eimc.2011.03.012

M. T. Madigan, J. M. Martinko, P. V. Dunlap, and D. P. Clark, Brock: Biología de los Microorganismos, 12th ed. Madrid, Spain: Pearson Educación, 2009.

G. J. Tortora, B. R. Funke, and C. L. Case, Introducción a la Microbiología, 12th ed. Buenos Aires, Argentina: Editorial Médica Panamericana, 2017.

J. G. Holt, Ed., The Shorter Bergey’s Manual of Determinative Bacteriology, 8th ed. Baltimore, MD, USA: Williams Wilkins, 1977.

L. F. D. Acosta and M. J. L. Hernández, “Biorremediación de suelos contaminados por organoclorados mediante la estimulación de microorganismos autóctonos, utilizando biosólidos,” Nexo Rev. Cient., vol. 29, no. 1, Jul. 2017. [Online]. Available: https://doi.org/10.5377/nexo.v29i01.4397

M. Schuldt, Lombricultura: Teoría y Práctica. Madrid, Spain: Mundi-Prensa, 2006.

M. C. Vásquez, J. T. G. Figueroa, and A. del P. Quintero, “Biorremediación de lodos contaminados con aceites lubricantes usados,” Rev. Colomb. Biotecnol., vol. 12, no. 1, Jan. 2010. [Online]. Available: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/15579

A. Corona-Cruz, G. Gold-Bouchot, M. Gutierrez-Rojas, O. Monroy-Hermosillo, and E. Favela, “Anaerobic-aerobic biodegradation of ddt (dichlorodiphenyl trichloroethane) in soils,” Bull. Environ. Contam. Toxicol., vol. 63, no. 2, Aug. 1999. [Online]. Available: https://doi.org/10.1007/s001289900969

Soil Science Division Staff, Soil Survey Manual. Washington, DC, USA: GPO, 2017. [Online]. Available: https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre50.pdf

J. B. Eweis, S. J. Ergas, D. P. Y. Chang, and E. D. Schroeder, Principios de Biorrecuperación: Tratamientos Para la Descontaminación y Regeneración de Suelos y Aguas Subterráneas Mediante Procesos Biológicos y Físico-químicos. Madrid, Spain: McGraw-Hill, 1999.

G. Mamani-Mamani, F. Mamani-Pati, H. Sainz-Mendoza, and R. Villca-Huanaco, “Comportamiento de la lombriz roja (Eisenia spp.) en sistemas de vermicompostaje de residuos orgánicos,” J. Selva Andina Res. Soc., vol. 3, no. 1, Aug. 2012. [Online]. Available: https://doi.org/10.36610/j.jsars.2012.030100044

G. M. Pierzynski, G. F. Vance, and T. J. Sims, Soils and Environmental Quality, 3rd ed. Boca Raton, FL, USA: CRC Press, 2005. [Online]. Available: https://doi.org/10.1201/b12786

I. Aroua et al., “Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization,” Int. Microbiol., vol. 22, no. 1, Mar. 2019. [Online]. Available: https://doi.org/10.1007/s10123-018-0033-y

C. L. Boechat, F. S. Carlos, C. W. A. do Nascimento, P. D. de Quadros, E. L. S. de Sá, and F. A. de O. Camargo, “Bioaugmentation-assisted phytoremediation of as, cd, and pb using Sorghum bicolor in a contaminated soil of an abandoned gold ore processing plant,” Rev. Bras. Cienc. Solo, vol. 44, Oct. 2020. [Online]. Available: https://doi.org/10.36783/18069657rbcs20200081

P. K. Mohapatra, Textbook of Environmental Microbiology. New Delhi, India: I.K. International Publishing House, 2008.

M. L. Ortíz-Hernández and E. Sánchez-Salinas, “Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México,” Rev. Int. Contam. Ambient., vol. 26, no. 1, Feb. 2010. [Online]. Available: https://www.redalyc.org/articulo.oa?id=37014382003

M. A. Prada-Vásquez, S. A. Cardona-Gallo, and J. C. Loaiza-Usuga, “Anaerobic biodegradation of ddt in contaminated soil by biostimulation: Laboratory and pilot-scale studies,” Acta Univ. Carolinae Geogr., vol. 52, no. 2, Oct. 2017. [Online]. Available: https://doi.org/10.14712/23361980.2017.16

Cabinet Regulation No. 804 of 2005, “Regulations regarding quality standards for soil and ground,” Oct. 2005. [Online]. Available: http://faolex.fao.org/docs/pdf/lat190875ENG.pdf

P. N. Saxena, S. K. Gupta, and R. C. Murthy, “Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida—a possible mechanism,” Ecotoxicol. Environ. Saf., vol. 100, Feb. 2014. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2013.11.006

A. Rico, C. Sabater, and M.-Á. Castillo, “Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida,” Ecotoxicol. Environ. Saf., vol. 127, May 2016. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.02.004

Y. Shi, Q. Zhang, D. Huang, X. Zheng, and Y. Shi, “Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial ddt contamination,” Pestic. Biochem. Physiol., vol. 128, Mar. 2016. [Online]. Available: https://doi.org/10.1016/j.pestbp.2015.10.009

M. Kästner and A. Miltner, “Application of compost for effective bioremediation of organic contaminants and pollutants in soil,” Appl. Microbiol. Biotechnol., vol. 100, no. 8, Apr. 2016. [Online]. Available: https://doi.org/10.1007/s00253-016-7378-y

Bureau Veritas, Manual Para la Formación en Medio Ambiente. Madrid, Spain: Editorial Lex Nova, 2008.

R. J. F. M. E. Pavan, J. M. Rodriguez, P. Gadaleta, J. M. J. S. L. Abbott et al. “Phylogenetic relationships of the genus Kluyvera: Transfer of Enterobacter intermedius Izard et al. 1980 to the genus Kluyvera as Kluyvera intermedia comb. nov. and reclassification of Kluyvera cochleae as a later synonym of K. intermedia,” Int. J. Syst. Evol. Microbiol., vol. 55, no. 1, Jan. 2005. [Online]. Available: https://doi.org/10.1099/ijs.0.63071-0

M. F. Peruzy, M. Aponte, Y. T. R. Proroga, F. Capuano, D. Cristiano, E. Delibato et al., “Yersinia enterocolitica detection in pork products: Evaluation of isolation protocols,” Food Microbiol., vol. 92, Dec. 2020. [Online]. Available: https://doi.org/10.1016/j.fm.2020.103593

N. Pradhan and A. O. Ingle, “Mineralization of phenol by a Serratia plymuthica strain GC isolated from sludge sample,” Int. Biodeterior. Biodegradation, vol. 60, no. 2, Jan. 2007. [Online]. Available: https://doi.org/10.1016/j.ibiod.2007.01.001

B. Betancur-Corredor, N. Pino, G. A. Peñuela, and S. Cardona-Gallo, “Biorremediación de suelo contaminado con pesticidas: Caso DDT,” Gestión Ambient., vol. 16, no. 3, 2013. [Online]. Available: https://revistas.unal.edu.co/index.php/gestion/article/view/33173

F. Castillo-Rodríguez, M. D. Roldán-Ruiz, R. Blasco-Plá, M. J. Huertas-Romera, F. J. Cabellero-Domínguez, C. Moreno-Vivián et al., Biotecnología Ambiental. Madrid, Spain: Editorial Tébar, 2005.

B. E. Rittman and P. L. McCarty, Biotecnología del Medio Ambiente: Principios y Aplicaciones. Madrid, Spain: McGraw-Hill, 2001.

S. Bajaj, S. Sagar, S. Khare, and D. K. Singh, “Biodegradation of γ-hexachlorocyclohexane (lindane) by halophilic bacterium Chromohalobacter sp. LD2 isolated from HCH dumpsite,” Int. Biodeterior. Biodegradation, vol. 122, Aug. 2017. [Online]. Available: https://doi.org/10.1016/j.ibiod.2017.04.014

Downloads

Published

2024-11-22

How to Cite

Portilla-Saldarriaga, M. C., Dueñas-García, S. C., Hernández-Celi, I., & Estévez-Gómez, M. J. (2024). Gentle remediation options for DDT- and HCH-contaminated soil. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20241143

Issue

Section

Research paper