Gold nanoparticle production by continuous-wave laser ablation in liquid media

Authors

DOI:

https://doi.org/10.17533/udea.redin.20241246

Keywords:

Gold nanoparticles, laser ablation, nanofabrication, CW laser, nanomaterials

Abstract

Over the past two decades, gold nanoparticles have gained much attention because of their unique qualities, such as optical effects, catalytic response, high surface area, and low toxicity. Chemical synthesis and pulsed laser ablation are the primary methods to create these nanoparticles. However, pulsed laser ablation can be expensive because it requires specialized lasers. Using low-cost, continuous-wave lasers is suggested to create gold nanoparticles with diameters of approximately 100 nm. Two different gold target thicknesses were used to observe particle production at different irradiation times and pulse durations. Also, a simple approximation was used to estimate the on/off duration based on target thickness, which yielded good results. This technique can be implemented without incurring high costs, increasing the global ability to produce and use nanoparticles for various purposes.

|Abstract
= 39 veces | PDF
= 9 veces|

Downloads

Download data is not yet available.

Author Biographies

Laura Carmona-Saldarriaga, Universidad EAFIT

PhD candidate, Energy, Materials and Industrial Area

Alex Ossa, Universidad EAFIT

Energy, Materials and Industrial Area, Professor

References

Z. Fang, Q. Xing, D. Fernandez, X. Zhang, and G. Yu, “A mini review on two-dimensional nanomaterial assembly,” Nano Research, vol. 13, no. 5, May 2020. [Online]. Available: https://doi.org/10.1007/s12274-019-2559-5

B. D. Wilts, P. L. Clode, N. H. Patel, and G. E. Schröder-Turk, “Nature’s functional nanomaterials: Growth or self-assembly?” MRS Bull, vol. 44, no. 2, 2019. [Online]. Available: https://doi.org/10.1557/mrs.2019.21

P. Maheswari, D. Prasannadevi, and D. Mohan, “Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes,” High Perform Polym, vol. 25, no. 2, 2013. [Online]. Available: https://doi.org/10.1177/0954008312459865

Y. H. Kotp, “Removal of organic pollutants using polysulfone ultrafiltration membrane containing polystyrene silicomolybdate nanoparticles: Case study: Borg el Arab area,” Journal of Water Process Engineering, vol. 30, 2019. [Online]. Available: https://doi.org/10.1016/j.jwpe.2018.01.008

P. Nezhad-Mokhtari, M. Akrami-Hasan-Kohal, and M. Ghorbani, “An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications,” Int J Biol Macromol, vol. 154, Jul. 2020. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2020.03.112

N. A. Burton, R. v. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.rser.2020.110255

T. Han, S. Privitera, R. G. Milazzo, C. Bongiorno, S. D. Franco, et al., “Photo-electrochemical water splitting in silicon-based photocathodes enhanced by plasmonic/catalytic nanostructures,” Materials Science and Engineering: B, vol. 225, 2017. [Online]. Available: https://doi.org/10.1016/j.mseb.2017.08.022

M. S. Shalaby, H. Abdallah, A. Cenian, G. Solowski, M. Sawczak, et al., “Laser synthesized gold nanoparticles, blend nf membrane for phosphate separation from wastewater,” Sep Purif Technol, vol. 247, Sep. 2020. [Online]. Available: https://doi.org/10.1016/j.seppur.2020.116994

P. Slepička, N. S. Kasálková, J. Siegel, Z. Kolská, and V. Švorčík, “Methods of gold and silver nanoparticles preparation,” Materials, vol. 13, no. 1, Jan. 2020. [Online]. Available: https://doi.org/10.3390/ma13010001

J. P. Sylvestre, A. v. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl Phys A Mater Sci Process, vol. 80, no. 4, Feb. 2005. [Online]. Available: https://doi.org/10.1007/s00339-004-3081-4

S. Mittelmann, J. Oelmann, S. Brezinsek, D. Wu, H. Ding, and G. Pretzler, “Laser-induced ablation of tantalum in a wide range of pulse durations,” Appl Phys A Mater Sci Process, vol. 126, no. 9, Sep. 2020. [Online]. Available: https://doi.org/10.1007/s00339-020-03838-2

F. Mafuné, J. Y. Kohno, Y. Takeda, and T. Kondow, “Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control,” Journal of Physical Chemistry B, vol. 106, no. 31, Aug. 2002. [Online]. Available: https://doi.org/10.1021/jp020577y

J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: Threshold fluence, incubation coefficient and ablation rates,” Applied Physics A: Materials Science and Processing, vol. 101, no. 1, 2010. [Online]. Available: https://doi.org/10.1007/s00339-010-5766-1

H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Applied Nanoscience, vol. 2, no. 3, 2012. [Online]. Available: https://doi.org/10.1007/s13204-012-0106-8

N. G. Semaltianos, “Nanoparticles by laser ablation,” Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 2, Apr. 2010. [Online]. Available: https://doi.org/10.1080/10408431003788233

T. E. Itina, “On nanoparticle formation by laser ablation in liquids,” Journal of Physical Chemistry C, vol. 115, no. 12, 2011. [Online]. Available: https://doi.org/10.1021/jp1090944

C. Xu, M. Lin, X. Wang, Q. Shen, Z. Zheng, et al., “Fabrication of high-performance magnetic elastomers by using natural polymer as auxiliary dispersant of Fe₃O₄ nanoparticles,” Compos Part A Appl Sci Manuf, vol. 140, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.compositesa.2020.106158

A. v. Simakin, V. v. Voronov, and G. A. Shafeev, “Nanoparticle formation during laser ablation of solids in liquids,” Physics of Wave Phenomena, vol. 15, no. 4, Dec. 2007. [Online]. Available: https://doi.org/10.3103/s1541308x07040024

D. Reyes, M. Camacho-Lopez, A. R. Vilchis-Nestor, and R. I. Rodríguez-Beltrán, “Obtención de nanoestructuras metálicas mediante la técnica de ablación láser de sólidos en líquidos,” in Temas selectos en ciencia de materiales, 2016, ch. 1.

S. Scaramuzza, M. Zerbetto, and V. Amendola, “Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: Insights to improve size control and productivity,” Journal of Physical Chemistry C, vol. 120, no. 17, May 2016. [Online]. Available: https://doi.org/10.1021/acs.jpcc.6b00161

A. O. Kucherik, Y. V. Ryabchikov, S. V. Kutrovskaya, A. Al-Kattan, S. M. Arakelyan, et al., “Cavitation-free continuous-wave laser ablation from a solid target to synthesize low-size-dispersed gold nanoparticles,” ChemPhysChem, vol. 18, no. 9, May 2017. [Online]. Available: https://doi.org/10.1002/cphc.201601419

A. F. M. Y. Haider, S. Sengupta, K. M. Abedin, and A. I. Talukder, “Fabrication of gold nanoparticles in water by laser ablation technique and their characterization,” Appl Phys A Mater Sci Process, vol. 105, no. 2, Nov. 2011. [Online]. Available: https://doi.org/10.1007/s00339-011-6542-6

A. Mathew, P. R. Sajanlal, and T. Pradeep, “Molecular precursor-mediated tuning of gold mesostructures: Synthesis and serrs studies,” J Cryst Growth, vol. 312, no. 4, Feb. 2010. [Online]. Available: https://doi.org/10.1016/j.jcrysgro.2009.11.039

V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” Journal of Physical Chemistry B, vol. 110, no. 14, Apr. 2006. [Online]. Available: https://doi.org/10.1021/jp0605092

Downloads

Published

2024-12-02

How to Cite

Carmona-Saldarriaga, L., & Ossa, A. (2024). Gold nanoparticle production by continuous-wave laser ablation in liquid media. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20241246

Issue

Section

Research paper