Preliminary results of irrigation management for mango using LSTM neural networks and IoT
DOI:
https://doi.org/10.17533/udea.redin.20240725Keywords:
IoT, irrigation management, LSTM neural networks, mango cultivation, trends forecastingAbstract
Mango cultivation in Colombia faces the impact of regional climate variability. To improve fruit development and minimize environmental and economic effects, it is necessary to implement efficient irrigation and appropriate water management technologies. In this study, we developed a trend forecasting system based on an LSTM neural network and technologies such as ThingsBoard, LoRA, and MQTT. The aim was to improve mango irrigation practices through informed decisions based on monitoring and predicting matric potential and evapotranspiration variables. This article describes the development and application of the system for mango irrigation management. Results validate the effectiveness of the proposed system for mango cultivation, with RMSE indices of 1.56 and 0.0019 and determination coefficients (R2) of 0.9989 and 0.9971 for matric potential and evapotranspiration, respectively. These findings support enhancing growth conditions and promoting sustainable practices. Despite data availability limitations, the system's efficacy in prediction and irrigation management demonstrates significant potential to maximize productivity and reduce the environmental and economic impacts of inadequate water management.
Downloads
References
X. Liu, Y. Peng, Q. Yang, X. Wang, and N. Cui, “Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and wue in a dry, hot environment based on topsis,” Agricultural Water Management, vol. 245, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.agwat.2020.106650
J. A. Martinez-Chiguachi, A. G. Fajardo, J. S. Esquivel, D. M. González, . G. Prieto, and D. Rincón, “Manejo integrado del cultivo de mango mangifera indica l.” Ciencias agropecuarias, vol. 6, no. 1, Oct. 2020.
Cadena del mango indicadores e instrumentos, Ministerio de Agricultura y Desarrollo Rural, Colombia, 2021, accessed May 16, 2023. [Online]. Available: https://tinyurl.com/2y7cpyuf
Á. M. Arcila-Cardona, G. P. Castillo-Urquiza, L. Pérez-Artiles, C. A. Abaunza-González, M. J. Yacomelo-Hernández, and R. I. León-Pacheco, “Modelo productivo de mango de azúcar (mangifera indica l.) para el departamento del magdalena,” Agrosavia, Apr. 2022. [Online]. Available: https://doi.org/10.21930/agrosavia.model.7405170
J. A. Bernal, C. Díaz, A. Tamayo, D. Kondo, N. Mesa, R. Ochoa, and et al., Tecnología para el cultivo del mango con énfasis en mangos criollos, primera ed. Rionegro, Colombia: Corpoica, 2009.
Y. Peng, L. Fei, X. Liu, G. Sun, K. Hao, N. Cui, and et al., “Coupling of regulated deficit irrigation at maturity stage and moderate fertilization to improve soil quality, mango yield and water-fertilizer use efficiency,” Scientia Horticulturae, vol. 307, Jan. 2023. [Online]. Available: https://doi.org/10.1016/j.scienta.2022.111492
X. Liu, Y. Zhang, X. Leng, Q. Yang, H. Chen, X. Wang, and et al., “Exploring the optimisation of mulching and irrigation management practices for mango production in a dry hot environment based on the entropy weight method,” Scientia Horticulturae, vol. 291, Jan. 2022. [Online]. Available: https://doi.org/10.1016/j.scienta.2021.110564
G. Sun, T. Hu, X. Liu, Y. Peng, X. Leng, Y. Li, and et al., “Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions,” Agricultural Water Management, vol. 260, Feb. 2022. [Online]. Available: 1https://doi.org/10.1016/j.agwat.2021.107296
E. Luján, A. Otero, S. Valenzuela, L. A. Steffenel, and S. Nesmachnow, “An integrated platform for smart energy management: The ccsem project,” Revista Facultad de ingeniería Universidad de Antioquia, no. 97, Nov. 2020. [Online]. Available: https://doi.org/10.17533/udea.redin.20191147
R. Cantini, F. Marozzo, and A. Orsino, “Deep learning meets smart agriculture: Using lstm networks to handle anomalous and missing sensor data in the compute continuum,” in Device-Edge-Cloud Continuum. Springer, 2023, pp. 141–153.
G. Sun, X. Liu, Q. Yang, X. Wang, and N. Cui, “Alternate infiltration irrigation improves photosynthetic characteristics and water use efficiency in mango seedlings,” Journal of Plant Growth Regulation, vol. 41, no. 3, Apr. 2021. [Online]. Available: https://doi.org/10.1007/s00344-021-10373-8
J. Wei, G. Liu, D. Liu, and Y. Chen, “Influence of irrigation during the growth stage on yield and quality in mango (mangifera indica l),” PLoS One, vol. 12, no. 4, Apr. 2017. [Online]. Available: https://doi.org/10.1371/journal.pone.0174498
C. Gonzalez-Amarillo, C. Cardenas-Garcia, M. Mendoza-Moreno, G. Ramirez-Gonzalez, and J. C. Corrales, “Blockchain-iot sensor (biots): A solution to iot-ecosystems security issues,” Sensors, vol. 21, no. 13, Jun. 2021. [Online]. Available: https://doi.org/10.3390/s21134388
C. Gonzalez-Amarillo, J. C. Corrales-Muñoz, M. Mendoza-Moreno, A. M. González-Amarillo, A. F. Hussein, and N. Arunkumar, “Aniot-based traceability system for greenhouse seedling crops,” IEEE Access, vol. 6, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2877293
C. Jordan, G. Donoso, and S. Speelman, “Measuring the effect of improved irrigation technologies on irrigated agriculture. a study case in central chile,” Agricultural Water Management, vol. 257, Nov. 2021. [Online]. Available: https://doi.org/10.1016/j.agwat.2021.107160
H. C. O. Barraza and G. Y. C. Henao, “Estado del agua del río cesar por vertimientos residuales de la ciudad de valledupar. Bioindicación por índice bmwp/col,” Tecnura, vol. 24, no. 65, Jul. 2020. [Online]. Available: https://doi.org/10.14483/22487638.15766
F. F. O. Angarita, J. P. S. Castilla, B. Giraldo, and J. S. Luna, Plan ambiental del PAP-PDA del departamento del Cesar 2016-2019, Aguas del Cesar, Valledupar, Colombia, 2019.
ThingsBoard, “What is thingsboard,” 2023, accessed May 16, 2023. [Online]. Available: https://tinyurl.com/yc5ddjjr
Z. Kegenbekov and A. Saparova, “Using the mqtt protocol to transmit vehicle telemetry data,” Transportation Research Procedia, vol. 61, Feb. 2022. [Online]. Available: https://doi.org/10.1016/j.trpro.2022.01.067
K. Niles, J. Ray, K. Niles, A. Maxwell, and A. Netchaev, “Monitoring for analytes through lora and lorawan technology,” Procedia Computer Science, vol. 185, Jun. 2021. [Online]. Available: https://doi.org/10.1016/j.procs.2021.05.041
R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos,” Roma, 2006, accessed: May 16, 2023. [Online]. Available: https://www.fao.org/3/x0490s/x0490s00.htm
R. G. Allen, L. S. Pereira, D. Raes, and M. Smith”, “Crop evapotranspiration: guidelines for computing crop requirements. irrigation and drainage paper 56,” Irrigation and Water Management, vol. 56, Jan. 1998. [Online]. Available: https://tinyurl.com/yykdt7a7
J. R. Hilera and V. J. Martínez, Redes neuronales artificiales: fundamentos, modelos y aplicaciones. Madrid: RA-MA Editorial, 1995. [Online]. Available: https://www.researchgate.net/publication/44343683
J. Hu, “Application of deep learning in smart agriculture research,” Applied and Computational Engineering, vol. 5, no. 1, Jun 2023. [Online]. Available: https://doi.org/10.54254/2755-2721/5/20230630
J. Noguera, N. Portillo, and L. Hernandez, “Redes neuronales, bioinspiración para el desarrollo de la ingeniería,” ingeniare, no. 17, 2014. [Online]. Available: https://doi.org/10.18041/1909-2458/ingeniare.17.584
R. Peirano, W. Kristjanpoller, and M. C. Minutolo, “Forecasting inflation in latin american countries using a sarima–lstm combination,” Soft Computing, vol. 25, no. 16, Aug 2021.
J. Li and S. J. Qin, “Applying and dissecting lstm neural networks and regularized learning for dynamic inferential modeling,” Computers & Chemical Engineering, vol. 175, Jul 2023. [Online]. Available: https://doi.org/10.1016/j.compchemeng.2023.108264
G. Ma, C. Jin, H. Wang, P. Li, and H. S. Kang, “Study on dynamic tension estimation for the underwater soft yoke mooring system with lstm-am neural network,” Ocean Engineering, vol. 267, Jan 2023. [Online]. Available: https://doi.org/10.1016/j.oceaneng.2022.113287
C. J. Willmott, S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, and et al., “Statistics for the evaluation and comparison of models,” Journal of Geophysical Research: Oceans, vol. 90, no. C5, Sep. 1985. [Online]. Available: https://doi.org/10.1029/JC090iC05p08995
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.