Small signal stability in low-renewable power systems: A 138 kV Santo Domingo case study
DOI:
https://doi.org/10.17533/udea.redin.20250154Keywords:
Renewable Energies, small signal, frequency stability, maximum damping, Prony’s methodAbstract
Small signal stability in electrical systems refers to the ability of the system to maintain stable operation in the face of low-amplitude disturbances, such as fluctuations in electrical demand or the off and on switching of generators. This type of analysis is essential because it provides insight into how the system responds to minor disturbances, such as variations in generation or unplanned load. Significant disturbances can induce unstable conditions with potentially serious consequences, such as widespread power outages. Advanced mathematical techniques address these issues, such as the Fourier transform and the Prony method. In this study, a method was developed using MATLAB, and flow runs were performed in Digsilent software to analyze the oscillations of small signals in a 138 kV substation with low penetration of renewable energy. This research is relevant because it allows us to assess the impact of small disturbances in the electricity system during the transition toward greater integration of renewable technologies. The goal is to improve the efficiency and safety of electrical infrastructure in the Dominican Republic, ensuring a more reliable and stable energy supply for residents and businesses. The analysis shows that the current system can absorb anomalies of small signals due to the low penetration of renewables. In addition, the tool developed allows the evaluation of scenarios with greater penetration of renewable energy, providing a solid basis for implementing preventive or corrective measures.
Downloads
References
M. Yao, S. Roy, and J. L. Mathieu, “Using demand response to improve power system small-signal stability,” Sustain. Energy, Grids Networks, vol. 36, p. 101214, 2023, doi: https://doi.org/10.1016/j.segan.2023.101214.
C. Yan, L. Zhou, W. Yao, J. Wen, and S. Cheng, “Probabilistic small signal stability analysis of power system with wind power and photovoltaic power based on probability collocation method,” Glob. Energy Interconnect., vol. 2, no. 1, pp. 19–28, 2019, doi: https://doi.org/10.1016/j.gloei.2019.06.003.
C. G. Tapia Abugoch, “Estudio de estabilidad de pequeña perturbación del sistema eléctrico chileno considerando la política energética 2050,” Universidad de Chile, 2020. [Online]. Available: https://repositorio.uchile.cl/handle/2250/176983
C. Y. Chung, L. Wang, F. Howell, and P. Kundur, “Generation rescheduling methods to improve power transfer capability constrained by small-signal stability,” IEEE Trans. Power Syst., vol. 19, no. 1, pp. 524–530, 2004, doi: 10.1109/TPWRS.2003.820700.
A. Sajadi, S. Zhao, K. Clark, and K. A. Loparo, “Small-Signal Stability Analysis of Large-Scale Power Systems in Response to Variability of Offshore Wind Power Plants,” IEEE Syst. J., vol. 13, no. 3, pp. 3070–3079, Sep. 2019, doi: 10.1109/JSYST.2018.2885302.
M. B. Dastas and H. Song, “Renewable Energy Generation Assessment in Terms of Small-Signal Stability,” Sustainability, vol. 11, no. 24, p. 7079, Dec. 2019, doi: 10.3390/su11247079.
C. Canizares et al., “Benchmark Models for the Analysis and Control of Small-Signal Oscillatory Dynamics in Power Systems,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 715–722, Jan. 2017, doi: 10.1109/TPWRS.2016.2561263.
A. Musengimana, H. Li, X. Zheng, and Y. Yu, “Small-Signal Model and Stability Control for Grid-Connected PV Inverter to a Weak Grid,” Energies, vol. 14, no. 13, p. 3907, Jun. 2021, doi: 10.3390/en14133907.
A. Herrero Sabat, “Aportaciones a la estabilidad de plantas marinas de generación eléctrica, con volantes de inercia,” Universitat Politècnica de Catalunya, 2023. doi: 10.5821/dissertation-2117-389982.
D. E. Echeverría and J. C. Cepeda, “Evaluación de Estabilidad Transitoria de Sistemas de Potencia utilizando el concepto de Centro de Inercia,” Rev. Técnica “Energía,” vol. 14, no. 1, Jan. 2018, doi: 10.37116/revistaenergia.v14.n1.2018.157.
A. Estrada Cruz, “Evaluación de un esquema de acción remedial basado en un disparo automático de generación para mitigar problemas de estabilidad angular en el sistema eléctrico nacional,” 2018. [Online]. Available: https://repositorioinstitucional.buap.mx/items/ed8e8b0d-24ed-464a-876b-1e76ec2d15e5
G. E. Román Beltrán, “Análisis de estabilidad transitoria de ángulo y frecuencia del sistema híbrido de las íslas Galápagos Baltra-Santa Cruz,” 2022. [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/23204
Y. Li, L. Fu, Q. Li, W. Wang, Y. Jia, and Z. Y. Dong, “Small-signal modelling and stability analysis of grid-following and grid-forming inverters dominated power system,” Glob. Energy Interconnect., vol. 6, no. 3, pp. 363–374, Jun. 2023, doi: 10.1016/j.gloei.2023.06.010.
D. S. Granados, “Diseño y ajuste en linea de un estabilizador de sistemas de potencia/Design and online tuning of a power system stabilizer,” Ingenieria, vol. 31, p. 141+, Dec. 2020, [Online]. Available: https://link.gale.com/apps/doc/A678018700/IFME?u=anon~ed15504a&sid=googleScholar&xid=d6e60a6a
E. F. Guanochanga Collaguazo and M. G. Ocaña Frutos, “Ubicación de un control de modos deslizantes y PSS’s con el objetivo de amortiguar oscilaciones electromecánicas utilizando el método del residuo y fuzzy,” 2018.
M. A. Carreño Galeano, “Estabilidad de pequeña señal de un sistema de potencia con VSCs de tipos grid-following y grid-forming considerando los algoritmos VSM, droop control y VOC,” Universidad de los Andes, 2022. [Online]. Available: http://hdl.handle.net/1992/58724
M. P. Martínez, Y. R. Domínguez, and E. G. Hidalgo, “Estabilidad transitoria de pequeñas oscilaciones en los sistemas eléctricos de potencia. Dispositivos usados para mejorarla,” Universidad Tecnologica de La Habana Jose Antonio Echavarria, 2018. [Online]. Available: https://www.researchgate.net/publication/331357789_Estabilidad_transitoria_de_pequenas_oscilaciones_en_los_sistemas_electricos_de_potencia_Dispositivos_usados_para_mejorarla
R. E. Cubillo, “Determinación de Modos Oscilatorios Presentes en el Sistema Eléctrico Ecuatoriano Mediante Técnicas Estadísticas,” Rev. Técnica “Energía,” vol. 13, no. 1, Jan. 2017, doi: 10.37116/revistaenergia.v13.n1.2017.16.
R. I. Zúñiga Gajardo, “Análisis técnico de interconexiones regionales desde una perspectiva de estabilidad,” Universidad de Chile, 2021. [Online]. Available: https://repositorio.uchile.cl/handle/2250/182465
D. Córdova Jimmy and D. S. Zambrano Chicaiza, “Estudio de estabilidad y confiabilidad ante la integración de generación distribuida en la red de distribución UN Milagro,” 2022. [Online]. Available: https://www.dspace.espol.edu.ec/handle/123456789/57026
Y. Guan, Z. Q. Zhu, I. A. A. Afinowi, J. C. Mipo, and P. Farah, “Difference in maximum torque-speed characteristics of induction machine between motor and generator operation modes for electric vehicle application,” Electr. Power Syst. Res., vol. 136, pp. 406–414, Jul. 2016, doi: 10.1016/j.epsr.2016.03.027.
G. A. Rodríguez Proaño, “Implementación de herramientas de análisis modal para evaluar el impacto en la estabilidad de pequeña señal del sistema eléctrico debido a la generación eólica: evaluar el nivel de amortiguamiento y determinación de los modos críticos para múltiples escen,” 2022. [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/22422
D. J. Guaman Apolo and J. E. Villacís Rodríguez, “Modelado de compensadores automáticos de potencia reactiva en lenguaje de programación dpl y dsl para la interconexión Ecuador-Perú 500 kv,” 2022. [Online]. Available: http://repositorio.utc.edu.ec/handle/27000/9783
J. Bi, H. Sun, S. Xu, R. Song, B. Zhao, and Q. Guo, “Mode-based Damping Torque Analysis in Power System Low-frequency Oscillations,” CSEE J. Power Energy Syst., vol. 9, no. 4, pp. 1337–1347, 2023, doi: 10.17775/CSEEJPES.2020.00990.
C. A. Juarez and D. G. Colome, “Estimación en línea de modos interárea utilizando la Transformada Wavelet Discreta y el Análisis Prony,” in 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII), IEEE, Nov. 2018, pp. 1–8. doi: 10.1109/CONCAPAN.2018.8596557.
F. J. Villalobos-Piña and R. Alvarez-Salas, “Algoritmo robusto para el diagnóstico de fallas eléctricas en el motor de inducción trifásico basado en herramientas espectrales y ondeletas.,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 12, no. 3, pp. 292–303, Jul. 2015, doi: 10.1016/j.riai.2015.04.003.
J. López Espejel, M. S. Yahaya Alassan, E. M. Chouham, W. Dahhane, and E. H. Ettifouri, “A comprehensive review of State-of-The-Art methods for Java code generation from Natural Language Text,” Nat. Lang. Process. J., vol. 3, p. 100013, Jun. 2023, doi: 10.1016/j.nlp.2023.100013.
I. Abdulrahman, “MATLAB-Based Programs for Power System Dynamic Analysis,” IEEE Open Access J. Power Energy, vol. 7, pp. 59–69, 2020, doi: 10.1109/OAJPE.2019.2954205.
F. Zonzini, M. Mohammadgholiha, and L. De Marchi, “A Combination of Chirp Spread Spectrum and Frequency Hopping for Guided Waves-based Digital Data Communication with Frequency Steerable Acoustic Transducers,” in 2022 IEEE International Ultrasonics Symposium (IUS), IEEE, Oct. 2022, pp. 1–4. doi: 10.1109/IUS54386.2022.9958662.
J. Lin, L. Ma, and Y. Yao, “A Fourier Domain Training Framework for Convolutional Neural Networks Based on the Fourier Domain Pyramid Pooling Method and Fourier Domain Exponential Linear Unit,” IEEE Access, vol. 7, pp. 116612–116631, 2019, doi: 10.1109/ACCESS.2019.2936591.
O. V. Prokhorova and S. P. Orlov, “Parametric optimization of control systems by the Etalon Control System assign using the root locus method or the poles and zeros location,” in 2017 IEEE II International Conference on Control in Technical Systems (CTS), IEEE, Oct. 2017, pp. 16–19. doi: 10.1109/CTSYS.2017.8109476.
Y. Su, C. Zeng, D. Kang, X. Wang, and H. Wang, “Analytic study on the poles and zeros for mechanical plants,” in 2017 3rd IEEE International Conference on Computer and Communications (ICCC), IEEE, Dec. 2017, pp. 2940–2944. doi: 10.1109/CompComm.2017.8323070.
W. Zi-li, S. Xiao-ou, and W. Xiao-rong, “Spectrum Sensing Detection Algorithm Based on Eigenvalue Variance,” in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), IEEE, May 2019, pp. 1656–1659. doi: 10.1109/ITAIC.2019.8785807.
P. Jorkowski and R. Schuhmann, “Mode tracking for parametrized eigenvalue problems in computational electromagnetics,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES), IEEE, Mar. 2018, pp. 1–2. doi: 10.23919/ROPACES.2018.8364147.
C. Li, G. Li, C. Wang, and Z. Du, “Eigenvalue Sensitivity and Eigenvalue Tracing of Power Systems With Inclusion of Time Delays,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3711–3719, Jul. 2018, doi: 10.1109/TPWRS.2017.2787713.
X. Cun, X. Chen, G. Geng, and Q. Jiang, “Online Tracking of Small-Signal Stability Rightmost Eigenvalue Based on Reference Point,” IEEE Access, vol. 11, pp. 40469–40478, 2023, doi: 10.1109/ACCESS.2023.3267802.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.