Obtaining materials from sargassum for use in an energy storage device

Authors

DOI:

https://doi.org/10.17533/udea.redin.20250775

Keywords:

Extraction, Valorization, Energy storage, Electrochemical techniques

Abstract

Sargassum has become an “ecological disaster” on most beaches in the Caribbean Sea, causing serious health, safety, economic and environmental problems. The objective of this study was to valorize sargassum for the extraction of sodium alginate, cellulose and cellulose nanocrystals. Cellulose was also used in the manufacture of a separator for an energy storage device (ESD) based on expanded graphite and activated carbon. Sargassum was characterized physicochemically; the results of this characterization are very relevant for the generation of bioenergy and removal of toxic contaminants. The extracted materials were identified by FT-IR; the spectra were very similar to the IR spectra of commercial samples, which corroborated that the materials extracted were sodium alginate, cellulose and cellulose nanocrystals. The performance of the ESD/cellulose-based separator was determined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Additionally, an RC circuit and an oscilloscope were used to perform a charge/discharge test. The voltammograms obtained for the ESD showed a rectangular shape with redox peaks characteristic of a pseudocapacitor and a battery, and the Nyquist plot showed a typical electrochemical performance of such ESD. Likewise, the developed devices have the capacity to store and release energy in seconds.

|Abstract
= 78 veces | PDF
= 49 veces|

Downloads

Download data is not yet available.

Author Biographies

Adriana Cervantes-Mendiola, Universidad Autónoma del Estado de Morelos

Master, Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Conductive polymer, Doctoral student

Ulises León-Silva, Universidad Autónoma del Estado de Morelos

Research Professor Synthesis and characterization of materials

María Elena Nicho, Universidad Autónoma del Estado de Morelos

Researcher and professor, Researching Centre CIICAp

J. Jesús Escobedo-Alatorre, Universidad Autónoma del Estado de Morelos

Electronics, optics, and instrumentation. Research Professor Researching Centre CIICAp

Jorge Arturo Sandoval-Espino , Universidad Autónoma del Estado de Morelos

PhD Digital signal processing. Researcher and Professor, Research centre CIICAp

Alfredo Olarte-Paredes, Tecnologico Nacional de México

PhD, Professor Electromechanical

René Salgado-Delgado, Tecnologico Nacional de México

Professor, Chemical Engineering

References

C. Hernández-Navarro, S. Pérez, E. Flórez, N. Acelas, and J. Muñoz-Saldaña, “Sargassum macroalgae from quintana roo as raw material for the preparation of high-performance phosphate adsorbent from aqueous solutions,” Journal of Environmental Management, vol. 342, Sep. 2023. [Online]. Available: https://doi.org/10.1016/j.jenvman.2023.118312

R. E. Rodríguez-Martínez, E. G. Torres-Conde, and E. Jordán-Dahlgren, “Pelagic sargassum cleanup cost in mexico,” Ocean and Coastal Management, vol. 237, Apr. 2023. [Online].Available: https://doi.org/10.1016/j.ocecoaman.2023.106542

V. Chávez, M. Uribe-Martínez, E. Cuevas, C., R. Rodríguez-Martínez, B. van Tussenbroek, V. Francisco, and et al. , “Massive influx of pelagic sargassum spp. on the coasts of the mexican Caribbean 2014–2020: Challenges and opportunities,” Water, vol. 12, no. 10, Oct. 2020. [Online]. Available: https://doi.org/10.3390/w12102908

M. Wang, C. Hu, B. B. Barnes, G. Mitchum, B. Lapointe, and J. P. Montoya, “The great atlantic sargassum belt,” Science, vol. 364, no. 6448, Jul. 2019. [Online]. Available: https://doi.org/10.1126/science.aaw7912

K. Bilba, C. Onésippe-Potiron, and M. A. Arsène, “Invasive biomass algae valorization: Assessment of the viability of sargassum seaweed as pozzolanic material,” Journal of Environmental Management, vol. 342, May. 2023. [Online]. Available: https://doi.org/10.1016/j.jenvman.2023.118056

A. Ahmad, N. M. Mubarak, F. T. Jannat, T. Ashfaq, C. Santulli, M. Rizwan, and et al., “A critical review on the synthesis of natural sodium alginate based composite materials: An innovative biological polymer for biomedical delivery applications,” Processes, vol. 9, Jan. 2021. [Online]. Available: https://doi.org/10.3390/pr9010137

A. Mohammed, R. Bissoon, E. Bajnath, K. Mohammed, T. Lee, M. Bissram, and et al., “Multistage extraction and purification of waste sargassum natans to produce sodium alginate: An optimization approach,” Carbohydrate Polymers, vol. 198, Oct. 2018. [Online]. Available: https://doi.org/10.1016/j.carbpol.2018.06.067

A. R. Gordillo-Sierra, L. F. Amador-Castro, A. E. Ramírez-Partida, T. García-Cayuela, D. Carrillo-Nieves, and H. S. Alper, “Valorization of caribbean sargassum biomass as a source of alginate and sugars for de novo biodiesel production,” Journal of Environmental Management, vol. 324, Dec. 2022. [Online]. Available: https://doi.org/10.1016/j.jenvman.2022.116364

P. Kumar-Gupta, S. S. Raghunath, D. Venkatesh, P. Venkat, and et al., An Update on Overview of Cellulose, Its Structure and Applications, 1st ed. United Kingdom, London: IntechOpen, 2019. [10] Y. Chao, S. Chen, Y. Xiao, X. Hu, Y. Lu, H. Chen, and et al., “Ordinary filter paper-derived hierarchical pore structure carbon materials for supercapacitor,” Journal of Energy Storage, vol. 35, May. 021.[Online]. Available: https://doi.org/10.1016/j.est.2021.102331

L. Zhang, P. Z. andF. Zhou, W. Zeng, H. Su, G. Li, and et al., “Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper,” ACS Publications, vol. 10, no. 1, Dec. 2015. [Online]. Available: https://doi.org/10.1021/acsnano.5b06648

S. Jiao, T. Li, C. Xiong., C. Tang, A. Dang, H. Li, and T. Zhao, “A facile method of preparing the asymmetric supercapacitor with two electrodes assembled on a sheet of filter paper,” Nanomaterials, vol. 9, no. 9, Sep. 2019. [Online]. Available: https://doi.org/10.3390/nano9091338

H. Ma, Z. Cheng, X. Li, B. Li, Y. Fu, and J. Jiang, “Advances and challenges of cellulose functional materials in sensors,” Journal of Bioresources and Bioproducts, vol. 8, no. 1, Jan. 2023. [Online].Available: https://doi.org/10.1016/j.jobab.2022.11.001

H. Doh, M. H. Lee, and W. S. Whiteside, “Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass,” Food Hydrocolloids, vol. 102, May. 2020. [Online]. Available:https://doi.org/10.1016/j.foodhyd.2019.105542

L. Dagousset, G. Pognon, G. T. M. Nguyen, F. Vidal, S. Jus, and P.-H. Aubert, “Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability,” Journal of Power Sources, vol. 391, Jul. 2018. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2018.04.073

X. Aeby, A. Poulin, G. Siqueira, M. K. Hausmann, and G. Nyström, “Fully 3d printed and disposable paper supercapacitors,” Advanced Materials, vol. 33, no. 26, Jul. 2021. [Online]. Available: https://doi.org/10.1002/adma.202101328

A. Rafique, I. Sequeira, A. S. Bento, M. Peyro-Moniz, J. Carmo, E. Oliveira, and et al., “A facile blow spinning technique for green cellulose acetate/polystyrene composite separator for flexible energy storage devices,” Chemical Engineering Journal, vol. 464, May. 2023. [Online]. Available: https://doi.org/10.1016/j.cej.2023.142515

D. Zhao, Q. Zhang, W. Chen, X. Yi, S. Liu, Q. Wang, and et al., “Highly flexible and conductive cellulose-mediated pedot:pss/mwcnt composite films for supercapacitor electrodes,” ACS Applied Materials and Interfaces, vol. 9, no. 15, Apr. 2017. [Online]. Available: https://doi.org/10.1021/acsami.7b01852

S. Yang and X. Qian, “Conductive ppy@cellulosic paper hybrid electrodes with a redox active dopant for high capacitance and cycling stability,” Polymers, vol. 14, no. 13, Jul. 2022. [Online].Available: https://doi.org/10.3390/polym14132634

H. Qiang, W. He, F. Guo, J. Cao, R. Wang, and Z. Guo, “Layer-by-layer self-assembled tempo-oxidized cellulose nanofiber/reduced graphene oxide/polypyrrole films for self-supporting flexible supercapacitor electrodes,” ACS Applied Nano Materials, vol. 5, no. 5, Apr. 2022. [Online]. Available: https://doi.org/10.1021/acsanm.2c00397

X. Lin, M. Wang, J. Zhao, X. Wu, J. Xie, and J. Yang, “Super-tough and self-healable all-cellulose-based electrolyte for fast degradable quasi-solid-state supercapacitor,” Carbohydrate Polymers, vol. 304,Jan. 2023. [Online]. Available: https://doi.org/10.1016/j.carbpol.2022.120502

O. S. R. Pasanda and A. Azis, “The extraction of brown algae (sargassum sp) through calcium path to produce sodium alginate,” Jurnal Bahan Alam Terbarukan, vol. 7, no. 1, Jan. 2018. [Online].Available: https://doi.org/10.15294/jbat.v7i1.11412

C. Yamashita, I. C. Freitas-Moraes, A. G. Ferreira, C. C. Zanini-Branco, and I. G. Branco, “Multi-response optimization of alginate bleaching technology extracted from brown seaweeds by an eco-friendly agent,” Carbohydrate Polymers, vol. 251, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.carbpol.2020.116992

R. S. Baghel, C. R. K. Reddy, and R. P. Singh, “Seaweed-based cellulose: Applications and future perspectives,” Carbohydrate Polymers, vol. 267, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.carbpol.2021.118241

J. A. Hernández-Flores, A. B. Morales-Cepeda, C. F. Castro-Guerrero, F. Delgado-Arroyo, M. R. Díaz-Guillén, and et al., “Morphological and electrical properties of nanocellulose compounds and its application on capacitor assembly,” International Journal of Polymer Science, Apr. 2020. [Online]. Available:https://doi.org/10.1155/2020/1891064

M. M. Rahman, P. M. Joy, M. N. Uddin, M. Z. Bin-Mukhlish, and M. M. R. Khan, “Improvement of capacitive performance of polyaniline based hybrid supercapacitor,” Heliyon, vol. 7, no. 7, Jul.2021. [Online]. Available: https://doi.org/10.1016/j.heliyon.2021. e07407

I. A. Nava-Jiménez, S. Tejeda-Vega, G. E. Cortina-Ramírez, G. Zarazúa-Ortega, C. Berriozabal-Islas, and H. Sánchez-Hernández, “Macro and microelement analysis of sargassum fluitans and sargassum natans arriving in the coastal zone of cancun, quintana roo, mexico,” Revista de Biología Marina y Oceanografía, vol. 57, no. 1, Jan. 2022. [Online]. Available: http://dx.doi.org/10.22370/rbmo.2022.57.1.3358

J. Tomailla and J. Lannacone, “Lethal and sublethal toxicity of arsenic cadmium mercury and lead on fish paracheirodon innesi neon tetra (characidae),” Revista de Toxicología, vol. 35, no. 2, Jan.2018.

A. C. Cerda and R. U. Moll, Caracterización de biomasa leñosacon fines energéticos. Chile, Santiago de Chile: BIOCOMSA, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, InnovaChile, Jan. 2013. [Online]. Available: https://www.researchgate.net/publication/326642020

R. Castro, J. Suárez, and F. M. Eimil, “Evaluación del poder calorífico superior en biomasa,” Investigación Agraria, Sistemas y Recursos Forestales, vol. 8, no. 1, Jan. 1999.

N. se encontró, “Análisis cinético de la descomposición térmica de sargassum spp como fuente renovable de energía,” Jan. 2022.

C. D. la Cruz-Montelongo, J. Herrera-Gamboa, I. A. Ortiz-Sánchez, I. C. Ríos-Sucedo, R. R. Serna, and R. Carrillo-Parra, “Caracterización energética del carbón vegetal producido en el centro norte de méxico,” Madera y Bosques, vol. 26, no. 2, Jul. 2020. [Online]. Available: https://doi.org/10.21829/myb.2020.2621971

M. García. (2008, Jan.) Carbón de encino: fuente de calor y energía. [Online]. Available: https://www.ccmss.org.mx/wp-content/uploads/Carbon_de_encino_fuente_de_calor_y_energia.pdf

B. I. van Tussenbroek, H. A. Hernández-Arana, R. E. Rodríguez-Martínez, J. Espinoza-Avalos, H. M. Canizales-Flores, C. E. González-Godoy, and et al., “Severe impacts of brown tides caused by sargassum spp. on near-shore caribbean seagrass communities,” Marine Pollution Bulletin, vol. 122, no. 1-2, Sep. 2017.[Online]. Available: https://doi.org/10.1016/j.marpolbul.2017.06.057

S. Saldarriaga-Hernandez, E. F. Nájera-Martínez, M. A. Martínez-Prado, and E. M. Melchor-Martínez, “Sargassum-based potential biosorbent to tackle pollution in aqueous ecosystems – an overview,” Case Studies in Chemical and Environmental Engineering, vol. 2, Sep. 2020. [Online]. Available: https://doi.org/10.1016/j.cscee.2020.100032

D. M. S. A. Salem and M. M. Ismail, “Characterization of cellulose and cellulose nanofibers isolated from various seaweed species,” Egyptian Journal of Aquatic Research, vol. 48, no. 4, Dec. 2022.[Online]. Available: https://doi.org/10.1016/j.ejar.2021.11.001

Y. O. B., E. R. P. L, and A. C. V. Negrón, “Extracción y caracterización del alginato de sodio de la macroalga macrocystis pyrifera,” Revista de la Sociedad Química del Perú, vol. 86, no. 3, Jul. 2020. [Online].Available: https://doi.org/10.37761/rsqp.v86i3.300

J. M. Wasikiewicz, F. Yoshii, N. Nagasawa, R. A. Wach, and H. Mitomo, “Degradation of chitosan and sodium alginate by gamma radiation sonochemical and ultraviolet methods,” Radiation Physics and Chemistry, vol. 73, no. 5, Aug. 2005. [Online]. Available: https://doi.org/10.1016/j.radphyschem.2004.09.021

H. Daemi and M. Barikani, “Synthesis and characterization of calcium alginate nanoparticles sodium homopolymannuronate salt and its calcium nanoparticles,” Scientia Iranica, vol. 19, no. 6, Dec. 2012. [Online]. Available: https://doi.org/10.1016/j.scient.2012.10.005

M. F. Nazarudin, A. Paramisparama, N. Afiqah-Khalida, M. Nazihah-Albaza, M. Syazwan-Shahidana, I. S. Md-Yasin, and et al., “Metabolic variations in seaweed sargassum polycystum samples subjected to different drying methods via 1h nmr-based metabolomics and their bioactivity in diverse solvent extracts,” Arabian Journal of Chemistry, vol. 13, no. 6, Nov. 2020. [Online]. Available: https://doi.org/10.1016/j.arabjc.2020.09.002

C. L. M.-L. Kok and C. L. Wong, “In vitro properties of methanol extract and sodium alginate of argassum polycystum c. agardh brown seaweed collected from malaysia.” Tropical Life Sciences Research, vol. 33, no. 1, 2022. [Online]. Available: https://doi.org/10.21315/tlsr2022.33.1.4

H. N. Afifah and S. H. Putri, “Dewaxing effects on cellulose isolation from waste of red algae and brown algae,” Biomass, Biorefinery and Bioeconomy, vol. 2, no. 1, 2024.

L. Chávez-Guerrero, A. Toxqui-Terán, and O. Pérez-Camacho, “One-pot isolation of nanocellulose using pelagic sargassum spp. from the caribbean coastline,” Journal of Applied Phycology, vol. 34, no. 1, 2022. [Online]. Available: https://doi.org/10.1007/s10811-021-02643-5

M. Wu, C. Yang, H. Xia, and J. Xu, “Comparative analysis of different separators for the electrochemical performances and long-term stability of high-power lithium-ion batteries,” Ionics, vol. 27, 2021. [Online]. Available: https://doi.org/27.10.1007/s11581-021-03943-z.

Q. Xu, Q. Kong, Z. Liu, X. Wang, R. Liu, J. Zhang, and et al., “Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator,” ACS Sustainable Chemistry and Engineering, vol. 2, no. 2, Oct. 2013. [Online]. Available: https://doi.org/10.1021/sc400370h5

D. Xu, Y. Heng, X. Qin, and D. Hu, “Membrane-based symmetric supercapacitors composed of cellulose solution-derived polydopamine-modified separators and polypyrrole/graphene-doped polydopamine-modified electrodes,” Journal of Energy Storage, vol. 50, Jun. 2022. [Online]. Available: https://doi.org/10.1016/j.est.2022.104640

J. Rodríguez-Quesada, K. R. Mora, C. A. Bernal-Samaniego, E. Jirón-García, and C. Rojas-Alvarado, “Development of nanocellulose hydrogels from sargassum seaweed as controlled nutrient release systems and their application in germination,” Ecological Engineering and Environmental Technology.

K. K. Yadav, R. Wadhwa, N. Khan, and M. Jha, “Efficient metal-free supercapacitor based on graphene oxide derived from waste rice,” Current Research in Green and Sustainable Chemistry, vol. 4, 2021.[Online]. Available: https://doi.org/10.1016/j.crgsc.2021.100075

F. Guo, N. Gupta, and X. Teng, Analyzing the charge transport using electro-kinetic study and numerical modeling. Books on Demand, 2018, vol. 87. [Online]. Available: https://dx.doi.org/10.5772/intechopen.73680

S. B. Aziz, E. M. A. Dannoun, A. R. Murad, K. H. Mahmoud, M. A. Brza, M. M. Nofal, K. A. Elsayed, S. N. Abdullah, J. M. Hadi, and M. F. Z. Kadir, Influence of scan rate on CV Pattern: Electrical and electrochemical properties of plasticized Methylcellulose: Dextran (MC:Dex) proton conducting polymer electrolytes, Alexandria Engineering Journal, vol. 61, no. 8, 2022. [Online]. Available: https://doi.org/10.1021/sc400370h5

C. Kim, Y. S., V. Balland, B. Limoges, and Costentin, “Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a tio2 mesoporous film,” Physical Chemistry Chemical Physics , vol. 19, no. 27, 2017. [Online]. Available: https://doi.org/10.1039/C7CP02810E

K. M. Ajay and M. N. Dinesh, “Influence of various activated carbon based electrode materials in the performance of super capacitor,” in IOP Conference Series: Materials Science and Engineering, vol. 310, no. 1, Feb. 2018. [Online]. Available: https://doi.org/10.1088/1757-899X/310/1/012083

V. V. N. Obreja, A. Dinescu, and A. C. Obreja, “Activated carbon ased electrodes in commercial supercapacitors and their performance,” International Review of Electrical Engineering, vol. 5, no. 1, 2010. [Online]. Available: https://www.researchgate.net/profile/Vasile-Obreja/publication/256457223_Activated_carbon_based_electrodes_in_commercial_supercapacitors_and_their_performance/links/0c960530f4499923cd000000/Activated-carbon-based-electrodes-in-commercialprotectpenaltyz@-supercapacitors-and-their-performance.pdf

A. H. A. Rahim, N. Ramli, A. N. Nordin, and M. F. A.Wahab, “Supercapacitor performance with activated carbon and graphene nanoplatelets composite electrodes, and insights from the equivalent circuit model,” Carbon Trends, vol. 5, 2021. [Online].Available: https://doi.org/10.1016/j.cartre.2021.100101

J. Bernhard-Gerschler, J. Kowal, M. Sander, and D. U. Sauer, “High-spatial impedance-based modeling of electricaland thermal behavior of lithium-ion batteries - a powerful design and analysis tool for battery packs in hybrid electric vehicles,” in 23rd International Electric Vehicle Symposium and Exposition (EVS 2007), 2007. [Online]. Available: https://www.researchgate.net/profile/Dirk-Uwe-Sauer/publication/322478056_High-spatial_impedance-based_modeling_of_electrical_and_thermal_behavior_of_lithium-ion_batteries_A_powerful_design_and_analysis_tool_for_battery_packs_in_hybrid_electric_vehicles/links/5b633350a6fdcc45b30c5f33/High-spatial-impedance-based-modeling-of-electrical-and-rotectpenaltyz@thermal-behavior-of-lithium-ion-batteries-Aprotectpenaltyz@-powerful-design-and-analysis-tool-forprotectpenaltyz@-battery-packs-in-hybrid-electric-vehicles.pdf

N. O. Laschuk, E. Bradley-Easton, and O. V. Zenkina, “Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry,” RSC Advances, vol. 11, no. 45, 2021. [Online]. Available: https://doi.org/10.1039/d1ra03785d

B. Balu and A. S. Khair, “The electrochemical impedance spectrum of asymmetric electrolytes across low to moderate frequencies,” Journal of Electroanalytical Chemistry, vol. 911, 2022. [Online]. Available: https://doi.org/10.1016/j.jelechem.2022.116222

X. Fan, P. Ohlckers, and X. Chen, “Tunable synthesis of hollow co3o4 nanoboxes and their application in supercapacitors,” Applied Sciences, vol. 10, no. 4, 2020. [Online]. Available: https://doi.org/10.3390/app10041208

A. Habekost, “Fundamentals and applications of electrochemicalimpedance spectroscopy - a didactic perspective,” World Journal of Chemical Education, vol. 9, no. 1, Dec. 2020. [Online]. Available: https://doi.org/10.12691/wjce-9-1-3

J.-B. Jorcin, M. E. Orazem, N. Pébère, and B. Tribollet, “Cpe analysis by local electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 51, no. 8, Jan. 2006. [Online]. Available: https://doi.org/10.1016/j.electacta.2005.02.128

J. D. Huffstutler, M. Wasala, J. Richie, J. Barron, A. Winchester, S. Ghosh, and et al. , “High performance graphene-based electrochemical double layer capacitors using 1-butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate ionic liquid as an electrolyte,” Electronics, vol. 7, no. 10, 2018. [Online]. Available: https://doi.org/10.3390/electronics7100229

D. Gandla, H. Chen, and D. Q. Tan, “Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon,” Materials Research Express, vol. 7, no. 8, 2020. [Online]. Available: https://doi.org/10.1088/2053-1591/abaf40

P. M. H. Madhushanka, K. S. P. Karunadasa, R. M. Gamini-Rajapakse, C. H. Manoratne, and H. M. N. Bandara, “Low-cost composite electrode consisting of graphite, colloidal graphite and montmorillonite with enhanced electrochemical performance for general electroanalytical techniques and device fabrication,” Chemical Papers, vol. 78, no. 1, 2024. [Online]. Available: https://doi.org/10.1007/s11696-023-03086-7

A. Jagadale, X. Zhou, R. Xiong, D. P. Dubal, J. Xu, and S. Yang, “Lithium ion capacitors (lics): Development of the materials,” Energy Storage Materials, vol. 19, May. 2019. [Online]. Available:https://doi.org/10.1016/j.ensm.2019.02.031

A. Gomaa, Y. Mashitah, S. Essam, and C. K. Feng, “High performance mno2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries,” Ceramics International, vol. 43, no. 11, Aug. 2017. [Online]. Available: https://doi.org/10.1016/j.ceramint.2017.03.195

S. C. Sekhar, B. Ramulu, and J. S. Yu, “Transition metal oxides for supercapacitors,” in Nanostructured Materials for Supercapacitors. Springer, 2022. [Online]. Available: https://doi.org/10.1007/978-3-030-99302-3_13

J. H. Park, O. O. Park, K. H. Shin, C. S. Jin, and J. H. Kim, “An electrochemical capacitor based on a ni ( oh )2/activated carbon composite electrode,” Electrochemical and Solid-State Letters, vol. 5,no. 2, 2001. [Online]. Available: https://doi.org/10.1149/1.1432245

Downloads

Published

2025-07-04

How to Cite

Cervantes-Mendiola, A., León-Silva, U., Nicho, M. E., Escobedo-Alatorre, J. J., Sandoval-Espino , J. A., Olarte-Paredes, A., & Salgado-Delgado, R. (2025). Obtaining materials from sargassum for use in an energy storage device. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250775

Issue

Section

Research paper