Synthesis of (Ti/Si) mixed oxides for the removal of Cr(VI) in simulated effluents
DOI:
https://doi.org/10.17533/udea.redin.20250674Keywords:
Waste treatment, composite material, metals, pollutants, experimental methodsAbstract
The use of agroindustry residues as precursor materials in the absorption processes has taken a significant importance due to their great absorptive porous characteristics; however, the most critical drawback of the heavy metals is the difficulty of eliminating them, particularly, the Cr(VI), which is widely used in tannery but, at the same time, is considered a powerful cancerogenic and mutagenic agent. For this reason, it is crucial to seek strategies to eliminate, or form complexes for future immobilization, such heavy metals. This research proposes the synthesis of a mix of silica/titanium (Si/Ti) using the rice husk as the source of silica, and titanium tetrachloride as a precursor of titanium for the removal of the Cr(VI) in simulated effluents. TGA, IR-ATR analysis, SEM, powder diffraction and fluorescence were applied to verify the efficiency of the reaction and the adsorptive capacity. Three variables were considered significant in the adsorption process: pH; amount of dosage; and concentration of Cr(VI) contaminant, which were assessed independently for silica oxide, from which a removal rate of 53.4 %, pH 1, 1,5 g adsorbent/L and initial concentration of Cr(VI) 0.08 mg/L was obtained. For the mixed oxide from a removal percentage of 97.2 % was obtained, with the best removal conditions at a pH of 1.5 g/L adsorbent dosage amount and Cr(VI) contaminant concentration of 0.08 mg /L.
Downloads
References
R. Chakraborty, A. Asthana, A. K. Singh, B. Jain, and A. B. H. Susan, “Adsorption of heavy metal ions by various low-cost adsorbents: a review,” Int J Environ Anal Chem, vol. 102, no. 2, Feb. 20, 2020. [Online]. Available: https://doi.org/10.1080/03067319.2020.1722811
W. Liu, L. Jin, J. Xu, Y. Liu, J. Li, P. Zhou, and et al., “Insight into ph dependent cr(vi) removal with magnetic fe3s4,” Chemical Engineering Journal, vol. 359, Nov. 24 2018. [Online]. Available:
https://doi.org/10.1016/j.cej.2018.11.192
H. K.-M. A. Ayati, S. Ghanbari, Y. Orooji, B. Tanhaei, F. Karimi, and et al., “Recent advances in removal techniques of cr(vi) toxic ion from aqueous solution: A comprehensive review,” Journal
of Molecular Liquids, vol. 329, May 01, 2021. [Online]. Available: https://doi.org/10.1016/j.molliq.2020.115062
A. K. Priya, V. Yogeshwaran, S. Rajendran, T. K. A. Hoang, M. Soto-Moscoso, A. A. Ghfar, and et al., “Investigation of mechanism of heavy metals (cr6+, pb2+ & zn2+) adsorption from
aqueous medium using rice husk ash: Kinetic and thermodynamic approach,” Chemosphere, vol. 286, Jan. 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2021.131796
D. Giuranno, S. Gambaro, G. Bruzda, R. Nowak, W. Polkowski, N. Sobczak, and et al., “Interface design in lightweight sic/tisi2 composites fabricated by reactive infiltration process: Interaction phenomena between liquid si-rich si-ti alloys and glassy carbon,” Materials, vol. 14, no. 13, 2021. [Online]. Available: https://doi.org/10.3390/ma14133746
Y. Wang, Z. Xing, Z. Li, X. Wu, G. Wang, and W. Zhou, “Facile synthesis of high-thermostably ordered mesoporous tio2/sio2 nanocomposites: An effective bifunctional candidate for removing
arsenic contaminations,” Journal of Colloid and Interface Science, vol. 485, Jan. 01, 2017. [Online]. Available: https://doi.org/10.1016/j.jcis.2016.09.022
V. Degiovanni, L. Berrio, and R. Charry, Origen , taxonomía , anatomía y morfología de la planta de arroz (Oryza sativa L .), 2017. [Online]. Available: https://cgspace.cgiar.org/bitstream/
handle/10568/82462/origen-ff4737f6.pdf?sequence=1
V. Degiovanni-Beltramo, J. Gómez, and J. Sierra, “Análisis de crecimiento y etapas de desarrollo de tres variedades de arroz (oryza sativa l.) en montería, córdoba,” Temas Agrarios, vol. 9, no. 1, Jan-Jun. 2004. [Online]. Available: https://doi.org/10.21897/rta.v9i1.620[9] H. Memedi, K. Atkovska, K. Lisichkov, M. Marinkovski, S. Kuvendziev, Z. Bozinovski, and et al., “Removal of Cr(VI) from water resources by using different raw inorganic sorbents,” Quality of Life (Banja Luka) - APEIRON, vol. 7, no. 3–4, 2016. [Online]. Available: https://doi.org/10.7251/qol1603077m
H. B. Yener and S. S. Helvacı, “Effect of synthesis temperature on the structural properties and photocatalytic activity of TiO₂/SiO₂ composites synthesized using rice husk ash as a SiO₂ source,” Separation and Purification Technology, vol. 140, Jan. 22, 2015. [Online]. Available: https://doi.org/10.1016/j.seppur.2014.11.013
P. U. Nzereogu, A. D. Omah, F. I. Ezema, E. I. Iwuoha, and A. C. Nwanya, “Silica extraction from rice husk: Comprehensive review and applications,” Hybrid Advances, vol. 4, Dec. 2023. [Online]. Available: https://doi.org/10.1016/j.hybadv.2023.100111
Y. Wang, C. Peng, E. Padilla-Ortega, A. Robledo-Cabrera, and A. López-Valdivieso, “Cr(VI) adsorption on activated carbon: Mechanisms, modeling and limitations in water treatment,” Journal of Environmental Chemical Engineering, vol. 8, no. 4, Aug. 2020. [Online]. Available: https://doi.org/10.1016/j.jece.2020.104031
T. Zang, Z. Cheng, L. Lu, Y. Jin, X. Xu, W. Ding, and J. Qu, “Removal of Cr(VI) by modified and immobilized Auricularia auricula spent substrate in a fixed-bed column,” Ecological Engineering, vol. 99, Feb. 2017. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2016.11.070
H. Banu-Yener and S. S. Helvaci, “Visible light photocatalytic activity of rutile TiO₂ fiber clusters in the degradation of terephthalic acid,” Applied Physics A, vol. 120, Jun. 03, 2015. [Online]. Available: https://doi.org/10.1007/s00339-015-9263-4
T. Rasheed, M. Adeel, F. Nabeel, M. Bilal, and H. M. N. Iqbal, “TiO₂/SiO₂ decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal,” Science of the Total Environment, vol. 688, Oct. 20, 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.06.200
R. Nandanwar, P. Ingh, F. F. Syed, and F. Z. Haque, “Preparation of TiO₂/SiO₂ nanocomposite with non-ionic surfactants via sol-gel process and their photocatalytic study,” Oriental Journal of Chemistry, vol. 30, no. 4, 2014. [Online]. Available: http://dx.doi.org/10.13005/ojc/300417
N. F. Jaafar, N. F. Jaafar, M. Khairuddean, and N. Nordin, “A review on recent progression of modifications on titania morphology and its photocatalytic performance,” Acta Chimica Solvenica, vol. 67, 2020. [Online]. Available: https://doi.org/10.17344/acsi.2019.5161
T. Serrano, M. V. Borrachero, J. M. Monzó, and J. Paya, “Morteros aligerados con cascarilla de arroz: Diseño de mezclas y evaluación de propiedades,” Dyna, vol. 79, no. 175, Sep–Oct. 2012. [Online]. Available: http://scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532012000500015
A. T. Ortega-Ramírez, M. Reyes-Tovar, and O. Silva-Marrufo, “Rice husk reuse as a sustainable energy alternative in Tolima, Colombia,” Scientific Reports, vol. 14, May. 06, 2024. [Online]. Available: https://doi.org/10.1038/s41598-024-60115-5
M. P. Argumedo-García, A. Consuegra-Solórzano, J. V. Vidal-Durango, and J. L. Marrugo-Negrete, “Exposición a mercurio en habitantes del municipio de San Marcos (departamento de Sucre) debida a la ingesta de arroz (Oryza sativa) contaminado,” Revista Salud Pública, vol. 15, no. 6, Dec. 2013. [Online]. Available: https://www.scielosp.org/pdf/rsap/v15n6/v15n6a10.pdf
C. M. R. Almeida, M. E. Ghica, and L. Durães, “An overview on alumina–silica-based aerogels,” Advances in Colloid and Interface Science, vol. 282, Aug. 2020. [Online]. Available: https://doi.org/10.1016/j.cis.2020.102189
L. Galeano, J. A. Navío, G. M. Restrepo, and J. M. Marín, “Preparación de sistemas óxido de titanio/óxido de silicio (TiO₂/SiO₂) mediante el método solvotérmico para aplicaciones en fotocatálisis,” Información Tecnológica, vol. 24, no. 5, 2013. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642013000500010
C. Goncalves-Rocha, D. A. Morozin-Zaia, R. V. da Silva-Alfaya, and A. A. da Silva-Alfaya, “Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents,” Journal of Hazardous Materials, vol. 166, no. 1, Jun. 15, 2009. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2008.11.074
R. A. Bakar, R. Yahya, and S. N. Gan, “Production of high purity amorphous silica from rice husk,” Procedia Chem., vol. 19, Mar. 24, 2016. [Online]. Available: https://doi.org/10.1016/j.proche.2016.03.092
R. M. Mohamed, I. A. Mkhalid, and M. A. Barakat, “Rice husk ash as a renewable source for the production of zeolite NaY and its characterization,” Arabian Journal of Chemistry, vol. 8, no. 1, Jan. 2015. [Online]. Available: https://doi.org/10.1016/j.arabjc.2012.12.013
E. Pabón-Gelves, S. M. Borja-Ordóñez, J. Ordóñez-Loza, and A. Ramírez-Vélez, “Síntesis y caracterización de óxidos mixtos de sílice-titania preparados por método sol-gel y tratamiento hidrotérmico,” Revista EIA, vol. 19, Jan–Jun. 2013. [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S1794-12372013000100011&script=sci_arttext
S. Steven, E. Restiawaty, and Y. Bindar, “Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect,” Renewable and Sustainable Energy Reviews, vol. 149, Oct. 2021. [Online]. Available: https://doi.org/10.1016/j.rser.2021.111329
L. Pérez-Quiñones, M. Llanes-Pérez, Y. Morales-Rodríguez, U. Tecnológica de La Habana, and J. Antonio, “Availability of SiO₂ from the controlled burning of Mayabeque rice shell,” Revista Ciencia y Construcción, vol. 2, no. 1, Jan–Mar. 2021. [Online]. Available: https://tinyurl.com/uxmx5rhn
F. Peng, Y. Jiang, J. Feng, F. Liu, J. Feng, and L. Li, “Novel silica-modified boehmite aerogels and fiber-reinforced insulation composites with ultra-high thermal stability and low thermal conductivity,” Journal of the European Ceramic Society, vol. 42, no. 14, Nov. 2022. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2022.07.001
H. G. Palhares, B. S. Gonçalves, L. M. C. Silva, E. H. M. Nunes, and M. Houmard, “Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO₂-based nanocomposites with high photocatalytic performance,” Journal of Sol-Gel Science and Technology, vol. 95, Mar. 25, 2020. [Online]. Available: https://doi.org/10.1007/s10971-020-05265-4
S. A. Abo-El-Enein, M. A. Eissa, A. A. Diafullah, M. A. Rizk, and F. M. Mohamed, “Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash,” Journal of Hazardous Materials, vol. 172, no. 2–3, Dec. 30, 2009. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2009.07.036
Y. Ding and D. Su, “Purifying native in-situ mastoid SiO₂ from rice husk,” Energy Procedia, vol. 16, no. Part B, Mar. 16, 2012. [Online]. Available: https://doi.org/10.1016/j.egypro.2012.01.203
F. M. Mohamed, K. A. Alfalous, and M. E. Gamal, “Utilization of poly inorganic coagulants impregnated with activated silica derived from rice husk ash in treatment of grey water,” Water, Energy, Food and Environment Journal, vol. 1, no. 2. [Online]. Available: http://dx.doi.org/10.18576/wefej/010202
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter