UV-C light effects on physicochemical and microbiological characteristics of Cape gooseberry (Physalis Peruviana L.)
DOI:
https://doi.org/10.17533/udea.redin.20250156Keywords:
Fungi, Agricultural chemistry, Food preservation, Food technology, Food resourcesAbstract
The effect of UV-C light radiation on the physicochemical and microbiological properties of Cape gooseberry (Physalis peruviana L.) fruits was studied. UV-C treatment was applied for different exposure times (7, 10, and 13 minutes) and fruits were stored at both refrigeration (5 ± 1°C) and room temperature (24 ± 1°C). Results showed that a 7-minute UV-C treatment was most effective in delaying fungal growth while preserving the quality of the fruit. However, higher exposure times led to increased weight loss and did not significantly inhibit fungal development. The study suggests UV-C light as a potential conservation method for extending the shelf life of Cape gooseberry without significantly affecting its quality parameters, though caution is needed regarding exposure times due to potential adverse effects on the cuticle and waxes of the fruit.
Downloads
References
References
M. L. Olivares-Tenorio, M. Dekker, R. Verkerk, and M. A. van Boekel, “Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective,” Trends Food Sci. Technol., vol. 57, pp. 83-92, 2016. [Online]. Available: https://doi.org/10.1016/j.tifs.2016.09.009
J. Liu, J. Bi, D. J. McClements, X. Liu, J. Yi, J. Lyu, M. Zhou, R. Verkerk, M. Dekker, X. Wu, and D. Liu, “Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit-and vegetable-based products: A review,” Carbohydr. Polym., vol. 250, pp. 116890, 2020. [Online]. Available: https://doi.org/10.1016/j.carbpol.2020.116890
G. Garzón, J. Osorio, P. Delgadillo, F. Mayorga, F. Enciso, D. Landsman, L. Mariño, and L. Barrero, “Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers,” Plant Gene, vol. 4, pp. 29—37, 2015. [Online]. Available: https://doi.org/10.1016/j.plgene.2015.09.003
C. Herrera, J. Hidrobo, and E. Basantes, “Evaluación del efecto de la asociación de coberturas vegetales vivas sobre el cultivo de uvilla (Physalis peruviana L.) en Huaca, provincia del Carchi, Ecuador,” Siembra, vol. 3, no. 1, pp. 91–100, 2016. [Online]. Available: http://dx.doi.org/10.29166/siembra.v3i1.266
N. Petkova, V. Popova, T. Ivanova, N. Mazova, N. Panayotov, and A. Stoyanova, “Nutritional composition of different cape gooseberry genotypes (Physalis peruviana L.) - A comparative study," Food Res., vol. 5, pp. 191-202, 2021.[Online]. Available: https://doi.org/10.26656/fr.2017.5(4).123
A. Weber, F. Soldateli, M. Barcelar, A. Moura, and A. Bitencourt, “Phenology and yield of cape gooseberry cultivated in open field in subtropical environment,” Comunicata Sci., vol. 12, pp. E3634, 2021. [Online]. Available: https://doi.org/10.14295/cs.v12.3634
S. Jung, Y. Cui, M. Barnes, C. Satam, S. Zhang, R. Chowdhury, A. Adumbumkulath, O. Sahin, C. Miller, S. Sajadi, L. Sassi, Y. Ji, M. Bennett, M. Yu, J. Friguglietti, F. Merchant, R. Verduzco, S. Roy, R. Vajtai, J. Meredith, J. Youngblood, N. Koratkar, M. Rahman, and P. Ajayan, “Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits,” Adv. Mater., vol. 32, pp. 1908291, 2020. [Online]. Available: https://doi.org/10.1002/adma.201908291
F. Allai, Z. Azad, N. Mir, and K. Gul, “Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety,” Appl. Food Res., vol. 3, no. 1, pp. 100258, 2023. [Online]. Available: https://doi.org/10.1016/j.afres.2022.100258
J. Bolton and K. Linden, “Standardization of methods for fluence (UV-dose) determination in bench-scale UV experiments,” J. Environ. Eng., vol. 129, no. 3, pp. 209-215, 2003. [Online]. Available: https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
M. Erkan, C. Y. Wang, y D. T. Krizek, “UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue,” Environ. Exp. Bot., vol. 45, no. 1, pp. 1-9, 2001. [Online]. Available: https://doi.org/10.1016/s0098-8472(00)00073-3
G. Jaramillo, E. Contigiani, M. Coronel, S. Alzamora, A. García-Loredo, and A. Nieto, “Study of UV-C treatments on postharvest life of blueberries ‘O'Neal’ and correlation between structure and quality parameters,” Heliyon, vol. 7, no. 6, pp. e07190, 2021. [11] [Online]. Available: https://doi.org/10.1016/j.heliyon.2021.e07190
A. L. Umagiliyage and R. Choudhary, “Postharvest ultraviolet light treatment of fresh berries for improving quality and safety,” Int. J. Food Sci. Nutr. Eng., vol. 8, no. 3, pp. 60-71, 2018. [Online]. Available: http://article.sapub.org/10.5923.j.food.20180803.02.html
A. Vega, J. López, M. Torres, M. Galotto, L. Puente, I. Quispe, and K. Di Scala, “High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.),” LWT-Food Sci. Technol., vol. 58, no. 2, pp. 519-526, 2014. [Online]. Available: https://doi.org/10.1016/j.lwt.2014.04.010
R. Mandal, X. Mohammadi, A. Wiktor, A. Singh, and A. Singh, “Applications of pulsed light decontamination technology in food processing: An overview,” Appl. Sci., vol. 10, no. 10, pp. 3606, 2020. [Online]. Available: https://doi.org/10.3390/app10103606
F. Salazar, S. Pizarro, I. Kasahara, and M. Labbé, “Effect of ultraviolet light-emitting diode processing on fruit and vegetable-based liquid foods: A review,” Front. Nutr., vol. 9, pp. 1020886, 2022. [Online]. Available: https://doi.org/10.3389/fnut.2022.1020886
M. Correa, S. Mera, F. Guacho, E. Villarreal, and S. Valencia, “Desinfección mediante el uso de luz UV-C germicida en diferentes medios como estrategia preventiva ante la COVID-19,” Minerva, vol. 1, no. 2, pp. 46–53, 2020. [Online]. Available: https://doi.org/10.47460/minerva.V1i2.11
S. Cote, L. Rodoni, E. Miceli, A. Concellón, P. Civello, and A. Vicente, “Effect of radiation intensity on the outcome of postharvest UV-C treatments,” Postharvest Biol. Technol., vol. 83, pp. 83-89, 2013. [Online]. Available: https://doi.org/10.1016/j.postharvbio.2013.03.009
G. Jaramillo, E. Contigiani, M. Castro, K. Hodara, S. Alzamora, A. Loredo, and A. Nieto, “Freshness maintenance of blueberries (Vaccinium corymbosum L.) during postharvest using ozone in aqueous phase: Microbiological, structure, and mechanical issues,” Food Bioprocess Technol., vol. 12, pp. 2136-2147, 2019. [Online]. Available: https://doi.org/10.1007/s11947-019-02358-z
M. Campo, C. Sojos, E. Bastidas, K. Silva, N. Matute, J. Cun, O. Cuesta, C. Jaramillo and I. Márquez, “Infusión de hojas de Moringa oleifera L. (moringa) y cascarilla de Theobroma cacao L (cacao),” Rev. Cub. Plantas Medicinales, vol. 24, n.o 1, 2019. [Online]. Available: https://revplantasmedicinales.sld.cu/index.php/pla/article/view/803/357
W. Brand-Williams, M. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT-Food Sci. Technol., vol. 28, no. 1, pp. 25-30, 1995. [Online]. Available: https://doi.org/10.1016/S0023-6438(95)80008-5
I.F. Benzie and J.J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power:’ The FRAP assay,” Anal. Biochem., vol. 239, no. 1, pp. 70-76, 1996. [Online]. Available: https://doi.org/10.1006/abio.1996.0292
R. Järvinen, M. Kaimainen, and H. Kallio, “Cutin composition of selected northern berries and seeds,” Food Chem., vol. 122, no. 1, pp. 137-144, 2010. [Online]. Available: https://doi.org/10.1016/j.foodchem.2010.02.030
I. Lara, B. Belge, y L. Goulao, “The fruit cuticle as a modulator of postharvest quality,” Postharvest Biol. Technol., vol. 87, pp. 103-112, 2014. [Online]. Available: https://doi.org/10.1016/j.postharvbio.2013.08.012
A. De Souza, M. Riederer, and J. Leide, “Multifunctional contribution of the inflated fruiting calyx: implication for cuticular barrier profiles of the solanaceous genera Physalis, Alkekengi, and Nicandra.” Front. Plant Sci., vol. 13, pp. 888930, 2022. [Online]. Available: https://doi.org/10.3389/fpls.2022.888930
M. Andrade-Cuvi, C. Moreno, M. Zaro, A. Vicente, and A. Concellón, “Improvement of the Antioxidant Properties and Postharvest Life of Three Exotic Andean Fruits by UV-C Treatment,” J. Food Qual., vol. 2017, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1155/2017/4278795
O. Esua, N. Chin, Y. Yusof, and R. Sukor, “A review on individual and combination technologies of UV-C radiation and ultrasound in postharvest handling of fruits and vegetables,” Processes, vol. 8, no. 11, p. 1433, 2020. [Online]. Available: https://doi.org/10.3390/pr8111433
H. García-Coronado, J. Tafolla-Arellano, M. Hernández-Oñate, A. Burgara-Estrella, J. Robles-Parra, and M. Tiznado-Hernández, “Molecular biology, composition and physiological functions of cuticle lipids in fleshy fruits,” Plants, vol. 11, no. 9, p. 1133, 2022. [Online]. Available: https://doi.org/10.3390/plants11091133
G. Jaramillo, “Cambios en la estructura y las propiedades fisicoquímicas de frutos de arándano por aplicación de factores emergentes de conservación,” Ph.D. thesis, Dept. Quím. Ind., Univ. Buenos Aires, 2019. [Online]. Available: https://ri.conicet.gov.ar/handle/11336/79969?show=full
A. Heredia, “Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer,” Biochim. Biophys. Acta (BBA)-Gen. Subj., vol. 1620, no. 1-3, pp. 1-7, 2003. [Online]. Available: https://doi.org/10.1016/S0304-4165(02)00510-X
M. Benezer-Benezer, E. Castro-Mercado, and E. García-Pineda, “La producción de especies reactivas de oxígeno durante la expresión de la resistencia a enfermedades en plantas,” Rev. Mex. Fit., vol. 26, no. 1, pp. 56-61, 2008. [Online]. Available: https://www.scielo.org.mx/pdf/rmfi/v26n1/v26n1a9.pdf
M. Glowacz, R. Colgan, y D. Rees, “The use of ozone to extend the shelf‐life and maintain quality of fresh produce,” J. Sci. Food Agric., vol. 95, no. 4, pp. 662-671, 2015. [Online]. Available: https://doi.org/10.1002/jsfa.6776
M. Darré, A.R. Vicente, L. Cisneros-Zevallos, and F. Artés-Hernández, “Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth,” Foods, vol. 11, no. 5, pp. 653, 2022. [Online]. Available: https://doi.org/10.3390/foods11050653
R. González-Barrio, M. Salmenkallio-Marttila, F. Tomás-Barberán, E. Cantos, and J. Espín, “Etiology of UV-C-induced browning in var. superior white table grapes,” J. Agric. Food Chem., vol. 53, no. 15, pp. 5990-5996, 2005. [Online]. Available: https://doi.org/10.1021/jf0504115
P. Perkins-Veazie, J. Collins, and L. Howard, “Blueberry fruit response to postharvest application of ultraviolet radiation,” Postharvest Biol. Technol., vol. 47, no. 3, pp. 280-285, 2008. [Online]. Available: https://doi.org/10.1016/j.postharvbio.2007.08.002
D. Li, Z. Luo, W. Mou, Y. Wang, T. Ying, and L. Mao, “ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.),” Postharvest Biol. Technol., vol. 90, pp. 56-62, 2014. [Online]. Available: https://doi.org/10.1016/J.POSTHARVBIO.2013.12.006
M. Ramadan, “Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview,” Food Res. Int., vol. 44, no. 7, pp. 1830-1836, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.foodres.2010.12.042
K. Mishra, H. Ojha, and N. Chaudhury, “Estimation of antiradical properties of antioxidants using DPPH- assay: A critical review and results,” Food Chem., vol. 130, no. 4, pp. 1036-1043, 2012. [Online]. Available: https://doi.org/10.1016/j.foodchem.2011.07.127
I.Benzie and J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay,” Anal. Biochem., vol. 239, no. 1, pp. 70-76, 1996. [Online]. Available: https://doi.org/10.1006/abio.1996.0292
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.