Experimental study of coconut (Cocos nucifera) waste through densification to obtain pellets and briquettes

Authors

DOI:

https://doi.org/10.17533/udea.redin.20250880

Keywords:

Coconut waste, Solid biofuels, Pellets, Briquettes, Higher heating value

Abstract

In Ecuador, extensive coconut (Cocos nucifera) harvesting generates large quantities of waste, including husks, shells, and fibers, posing environmental and economic challenges. This study explores the densification of coconut waste (CW) into pellets and briquettes to address these issues. The process involved raw material collection, pre-treatment, drying, grinding, sieving, mixing, pelletizing, and briquetting, using cassava starch (CS) as a binder. Two CW-to-CS compositions were tested for each type of fuel. Key physical and combustion properties, such as higher heating value, moisture, volatile matter, fixed carbon, ash content, bulk density, and friability, were analyzed. Results showed that the PCA91 pellet sample (90% CW, 10% CS) achieved the best performance with a higher heating value of 15,350 J/g and 11.54% moisture content. Similarly, the BCA91 briquette sample (90% CW, 10% CS) demonstrated better performance with a heating value of 14,950 J/g and 13.75% moisture content. Most samples met the heating value and bulk density requirements of the Swedish SS187120 and Colombian NTC 2060 standards, although some fell short on ash, volatile matter, and fixed carbon content. Adjusting the CW-to-CS ratio could optimize biofuel properties, balancing energy output and stability, highlighting coconut waste’s potential as a sustainable biofuel.

|Abstract
= 230 veces | PDF
= 57 veces|

Downloads

Download data is not yet available.

Author Biographies

Luis Velázquez-Araque, Universidad de Guayaquil

Associate Professor, Facultad de Ingeniería Química

Jonathan Teneta-Ibarra, Universidad de Guayaquil

Researcher, Facultad de Ingeniería Química

Fernando Sáenz-Gómez , Universidad de Guayaquil

Researcher, Facultad de Ingeniería Química

References

G. San Andrés, S. Aguilar-Sierra, and Bernardo Graziella, “Morphological, physical, and chemical characterization of coconut residues in Ecuador,” Heliyon, vol. 9, no. 9, p. e19267, Sep. 2023, doi: 10.1016/j.heliyon.2023.e19267.

O. Azeta, A. O. Ayeni, O. Agboola, and F. B. Elehinafe, “A review on the sustainable energy generation from the pyrolysis of coconut biomass,” Sci Afr, vol. 13, p. e00909, Sep. 2021, doi: 10.1016/j.sciaf.2021.e00909.

D. N. binti Tawasil et al., “Coconut Fibre and Sawdust as Green Building Materials: A Laboratory Assessment on Physical and Mechanical Properties of Particleboards,” Buildings, vol. 11, no. 6, p. 256, Jun. 2021, doi: 10.3390/buildings11060256.

F. C. Beveridge, S. Kalaipandian, C. Yang, and S. W. Adkins, “Fruit Biology of Coconut (Cocos nucifera L.),” Plants, vol. 11, no. 23, p. 3293, Nov. 2022, doi: 10.3390/plants11233293.

J. Shojaeiarani, D. S. Bajwa, and S. G. Bajwa, “Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass,” Bioresources, vol. 14, no. 2, pp. 4996–5015, Mar. 2019, doi: 10.15376/biores.14.2.Shojaeiarani.

M. Cesare Coral and J. Calle, “Producción de briquetas en la Cooperativa Atahualpa Jerusalén - Granja Porcón. Perú,” Una mirada desde múltiples perspectivas y dimensiones a los Sistemas de Bioenergía en Iberoamérica, pp. 74–81, Sep. 2020.

T. D. Marín Velásquez, C. N. Gota Díaz, and T. C. Ortiz Pinto, “Evaluación del extracto obtenido como lixiviado de fibra de coco (Cocos nucifera) como bioestimulante en la remediación de un suelo contaminado con petróleo,” Enfoque UTE, vol. 9, no. 4, pp. 180–193, Dec. 2018, doi: 10.29019/enfoqueute.v9n4.303.

T. Kebede, D. T. Berhe, and Y. Zergaw, “Combustion Characteristics of Briquette Fuel Produced from Biomass Residues and Binding Materials,” Journal of Energy, vol. 2022, pp. 1–10, Mar. 2022, doi: 10.1155/2022/4222205.

P. E. Akhator, L. Bazuaye, A. Ewere, and O. Oshiokhai, “Production and characterisation of solid waste-derived fuel briquettes from mixed wood wastes and waste pet bottles,” Heliyon, vol. 9, no. 11, p. e21432, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21432.

R. R. Antony Cristofer, C. C. Diego Santiago, C. C. Ricardo Javier, and R. R. Jissel Catalina, “Panorama Energético de los Biocombustibles en el Ecuador,” Ciencia Latina Revista Científica Multidisciplinar, vol. 7, no. 4, pp. 10254–10275, Oct. 2023, doi: 10.37811/cl_rcm.v7i4.7729.

A. Archana, M. Vijay Pradhap Singh, S. Chozhavendhan, G. Gnanavel, S. Jeevitha, and A. Muthu Kumara Pandian, “Coconut Shell as a Promising Resource for Future Biofuel Production,” 2020, pp. 31–43. doi: 10.1007/978-981-15-0410-5_3.

C. Gong et al., “The significance of biomass densification in biological-based biorefineries: A critical review,” Renewable and Sustainable Energy Reviews, vol. 183, p. 113520, Sep. 2023, doi: 10.1016/j.rser.2023.113520.

Z. Wei, Z. Cheng, and Y. Shen, “Recent development in production of pellet fuels from biomass and polyethylene (PE) wastes,” Fuel, vol. 358, p. 130222, Feb. 2024, doi: 10.1016/j.fuel.2023.130222.

H. Huaman, M. Ramírez, and R. Surichaqui, “Diseño y elaboración de briquetas ecológicas para la obtención de energía calorífica con residuos agrícolas generados en Masma Chicche, Jauja - 2021,” Huancayo, 2021.

A. León and S. Santacruz, “Elaboración de Briquetas a partir de Subproductos de Palma Africana (Elaeis guineensis J) y Arroz (Oryza sativa L),” Revista Politécnica, vol. 48, no. 2, pp. 65–70, Nov. 2021, doi: 10.33333/rp.vol48n2.06.

X. Ju, K. Zhang, Z. Chen, and J. Zhou, “A Method of Adding Binder by High-Pressure Spraying to Improve the Biomass Densification,” Polymers (Basel), vol. 12, no. 10, p. 2374, Oct. 2020, doi: 10.3390/polym12102374.

J. W. Butler, W. Skrivan, and S. Lotfi, “Identification of Optimal Binders for Torrefied Biomass Pellets,” Energies (Basel), vol. 16, no. 8, p. 3390, Apr. 2023, doi: 10.3390/en16083390.

“Standard - Biofuels and peat - Fuel pellets SS 187120 - Swedish Institute for Standards, SIS.” Accessed: Aug. 08, 2024. [Online]. Available: https://www.sis.se/en/produkter/petroleum-and-related-technologies/fuels/solid-fuels/ss187120/

“Briquetas combustibles para uso doméstico.” Accessed: Aug. 08, 2024. [Online]. Available: https://tienda.icontec.org/gp-briquetas-combustibles-para-uso-domestico-ntc2060-1987.html

T. Kalak, “Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future,” Energies (Basel), vol. 16, no. 4, p. 1783, Feb. 2023, doi: 10.3390/en16041783.

S. E. Ibitoye, R. M. Mahamood, T.-C. Jen, C. Loha, and E. T. Akinlabi, “An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties,” Journal of Bioresources and Bioproducts, vol. 8, no. 4, pp. 333–360, Nov. 2023, doi: 10.1016/j.jobab.2023.09.005.

M. Boro, A. K. Verma, D. Chettri, V. K. Yata, and A. K. Verma, “Strategies involved in biofuel production from agro-based lignocellulose biomass,” Environ Technol Innov, vol. 28, p. 102679, Nov. 2022, doi: 10.1016/J.ETI.2022.102679.

V. H. Luis-Zarate, M. C. Rodriguez-Hernandez, F. Alatriste-Mondragon, L. F. Chazaro-Ruiz, and J. R. Rangel-Mendez, “Coconut endocarp and mesocarp as both biosorbents of dissolved hydrocarbons in fuel spills and as a power source when exhausted,” J Environ Manage, vol. 211, pp. 103–111, Apr. 2018, doi: 10.1016/J.JENVMAN.2018.01.041.

F. R. B. Martinelli et al., “Influence of drying temperature on coconut-fibers,” Scientific Reports 2024 14:1, vol. 14, no. 1, pp. 1–14, Mar. 2024, doi: 10.1038/s41598-024-56596-z.

S. F. Papandrea, M. F. Cataldo, A. Palma, F. Gallucci, G. Zimbalatti, and A. R. Proto, “Pelletization of compost from different mixtures with the addition of exhausted extinguishing powders,” Agronomy, vol. 11, no. 7, Jul. 2021, doi: 10.3390/AGRONOMY11071357.

M. Aliyu et al., “EFFECT OF COMPACTION PRESSURE AND BIOMASS TYPE (RICE HUSK AND SAWDUST) ON SOME PHYSICAL AND COMBUSTION PROPERTIES OF BRIQUETTES,” Arid Zone Journal of Engineering, Technology and Environment, vol. 17, no. 1, pp. 61–70, 2020, Accessed: Aug. 09, 2024. [Online]. Available: https://azojete.com.ng/index.php/azojete/article/view/404

“D240 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter.” Accessed: Aug. 08, 2024. [Online]. Available: https://www.astm.org/d0240-19.html

“C25 Standard Test Methods for Chemical Analysis of Limestone, Quicklime, and Hydrated Lime.” Accessed: Aug. 08, 2024. [Online]. Available: https://www.astm.org/c0025-19.html

“NTE INEN 520-2012 Harina Cenizas.” Accessed: Aug. 08, 2024. [Online]. Available: https://es.scribd.com/doc/187738698/NTE-INEN-520-2012-Harina-Cenizas

“D3175 Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke.” Accessed: Aug. 08, 2024. [Online]. Available: https://www.astm.org/d3175-20.html

“D3172 Standard Practice for Proximate Analysis of Coal and Coke.” Accessed: Aug. 08, 2024. [Online]. Available: https://www.astm.org/d3172-13r21e01.html

“D1322 Standard Test Method for Smoke Point of Kerosene and Aviation Turbine Fuel.” Accessed: Aug. 08, 2024. [Online]. Available: https://www.astm.org/d1322-22.html

L. Velazquez-Araque and J. Cárdenas, “A Preliminary Study of Pelletized Ecuadorian Cocoa Pod Husk for its Use as a Source of Renewable Energy,” Systemics, cybernetics and informatics, vol. 14, no. 3, pp. 38–42, 2016, Accessed: Aug. 21, 2024. [Online]. Available: https://www.iiisci.org/journal/pdv/sci/pdfs/SA320MH16.pdf

L. Velazquez-Araque, D. Álvarez Macías, J. Sierra, A. Álvarez, and J. Cárdenas, “A Preliminary Study of Pelletized Ecuadorian Rice Husk for its Use as a Source of Renewable Energy,” WMSCI 2018 - 22nd World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedings, no. 3, pp. 154–158, 2018.

M. Arimanwa, P. Anyadiegwu, and N. Ogbonna, “The Potential Use of Coconut Fibre Ash (CFA) In Concrete”, Int J Eng Sci (Ghaziabad), vol. 9, no. 01, pp. 68–75, 2020, doi: 10.9790/1813-0901026875.

Z. Liu, A. Quek, R. Balasubramanian, “Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars”, Applied Energy, vol. 113, pp. 1315-1322 2014, doi: 10.1016/j.apenergy.2013.08.087.

P. L. Watat Kamga, T. Vitoussia, A. Nouga Bissoue, E. Nguidjol Nguimbous, D.Nana Dieudjio, B.Vaneck Bot, E. Njeugna, ¨Physical and energetic characteristics of pellets produced from Movingui sawdust, corn spathes, and coconut shells¨, Energy Reports, vol. 11, pp. 1291-1301, 2024, doi:10.1016/j.egyr.2024.01.006.

M. Matúš, P. Križan, J. Beniak, and Ľ. Šooš, “EFFECTS OF INITIAL MOISTURE CONTENT ON THE PRODUCTION AND QUALITY PROPERTIES OF SOLID BIOFUEL,” Acta Polytechnica, vol. 55, no. 5, p. 335, Oct. 2015, doi: 10.14311/AP.2015.55.0335.

N. Ungureanu, V. Vladut, G. Voicu, M. N. Dinca, and B. S. Zabava, “Influence of biomass moisture content on pellet properties - Review,” in Engineering for Rural Development, Latvia University of Agriculture, 2018, pp. 1876–1883. doi: 10.22616/ERDev2018.17.N449.

K. Vershinina, V. Dorokhov, D. Romanov, and P. Strizhak, “Ignition, Combustion, and Mechanical Properties of Briquettes from Coal Slime and Oil Waste, Biomass, Peat and Starch,” Waste Biomass Valorization, vol. 14, no. 2, pp. 431–445, 2023, doi: 10.1007/s12649-022-01883-x.

B. V. Bot, O. T. Sosso, J. G. Tamba, E. Lekane, J. Bikai, and M. K. Ndame, “Preparation and characterization of biomass briquettes made from banana peels, sugarcane bagasse, coconut shells and rattan waste,” Biomass Convers Biorefin, vol. 13, no. 9, pp. 7937–7946, 2023, doi: 10.1007/s13399-021-01762-w.

Phyu, T., Chandra, S., Shwe, W., & Kopila, S. (2019). The Preparation and Characteristics of Briquettes from Coconut Husks as Renewable Source of Energy. North America Academic Research, 58–71.

M. Mierzwa-Hersztek, K. Gondek, M. Jewiarz, and K. Dziedzic, “Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes,” J Mater Cycles Waste Manag, vol. 21, no. 4, pp. 786–800, Jul. 2019, doi: 10.1007/s10163-019-00832-6.

M. A. Waheed, O. A. Akogun, and C. C. Enweremadu, “An overview of torrefied bioresource briquettes: quality-influencing parameters, enhancement through torrefaction and applications,” Bioresour Bioprocess, vol. 9, no. 1, p. 122, Nov. 2022, doi: 10.1186/s40643-022-00608-1.

F. R. B. Martinelli, F. R. C. Ribeiro, M. T. Marvila, S. N. Monteiro, F. da C. G. Filho, and A. R. G. de Azevedo, “A Review of the Use of Coconut Fiber in Cement Composites,” Polymers (Basel), vol. 15, no. 5, p. 1309, Mar. 2023, doi: 10.3390/polym15051309.

Downloads

Published

2025-08-25

How to Cite

Velázquez-Araque, L., Teneta-Ibarra, J., & Sáenz-Gómez , F. (2025). Experimental study of coconut (Cocos nucifera) waste through densification to obtain pellets and briquettes. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250880

Issue

Section

Research paper