Finite element analysis of the osseointegration process in compression osteosynthesis plates
DOI:
https://doi.org/10.17533/udea.redin.20251191Keywords:
Simulation techniques, Biomedical engineering, Research and experimental developmentAbstract
Musculoskeletal injuries are a leading cause of disability worldwide. Orthopedic surgery commonly employs osteosynthetic devices, such as compression plates, which require proper osseointegration for successful outcomes. Although titanium and its alloys are widely used for their mechanical strength and biocompatibility, limited osseointegration can result in clinical complications and require surgical reintervention. In this study, an integrated computational model combining finite element analysis in COMSOL with a biological module in MATLAB was developed to simulate the osseointegration process in titanium compression plates. The model enabled the assessment of how plate geometry and mechanical stress distribution directly influence cellular responses at the fracture site. Results revealed localized compressive stresses along the fracture line, with a maximum value of 140 MPa. This stress promoted bone formation by day 40, with complete consolidation occurring around day 100. These findings suggest that the proposed model can serve as a predictive tool for optimizing osteosynthesis material design and improving clinical outcomes, with applications in the development of next-generation implants.
Downloads
References
International Osteoporosis Foundation, “Annual Report 2023.” 2023. [En línea]. Disponible en: https://www.osteoporosis.foundation/annual-report-2023.
MedPage Today, "Osteoporosis and its impact on health systems,". [En línea]. Disponible en: https://www.medpagetoday.com/medical-journeys/osteoporosis/108129.
Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT), “Tratamiento quirúrgico de las fracturas de cadera,” Manual del residente. [En línea]. Disponible en: https://unitia.secot.es/web/manual_residente/CAPITULO%2018.pdf.
N. Vilabrú Pagès y M. Baraldés Canal, "Osteosíntesis en el tratamiento de las fracturas: placas," en Manual del Residente, L. Marull Serra, Coord., Hospital Universitari “Doctor Josep Trueta” de Girona, [Online]. Available: https://unitia.secot.es/web/manual_residente/CAPITULO%2018.pdf.
S. Maldonado, S. Borchers, R. Findeisen, y F. Allgower, Mathematical modeling and analysis of force-induced bone growth, 2006.
Biovac, “La osteointegración de implantes de Titanio,” 2022. [En línea]. Disponible en: https://biovac.es/la-osteointegracion-de-implantes-de-titanio/.
A. M. Material, "Introduction to Ti-6Al-4V Titanium Alloy," AM Material. [Online]. Available: https://am-material.com/es/news/introduction-to-ti-6al-4v-titanium-alloy/.
E. F. Morgan, G. U. Unnikrisnan, y A. I. Hussein, "Bone Mechanical Properties in Healthy and Diseased States," Annual Review of Biomedical Engineering, vol. 20, pp. 119–143, 2018. [En línea]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053074/.
R. Huiskes, R. Ruimerman, G. H. van Lenthe, y J. D. Janssen, “Effects of mechanical forces on maintenance and adaptation of form in trabecular bone,” Nature, vol. 405, no. 6787, pp. 704-706, 2000. [En línea]. Disponible en: https://doi.org/10.1038/35015116.
H. Weinans, R. Huiskes, y H. J. Grootenboer, “The behavior of adaptive bone-remodeling simulation models,” Journal of Biomechanics, vol. 25, no. 12, pp. 1425-1441, 1992. [En línea]. Disponible en: https://doi.org/10.1016/0021-9290(92)90055-5.
V. Lemaire, F. L. Tobin, L. D. Greller, C. R. Cho, y L. J. Suva, “Modeling the interactions between osteoblast and osteoclast activities in bone remodeling,” Journal of Theoretical Biology, vol. 229, no. 3, pp. 293-309, 2004. [En línea]. Disponible en: https://doi.org/10.1016/j.jtbi.2004.03.023.
P. Pivonka, J. Zimak, D. W. Smith, B. S. Gardiner, C. R. Dunstan, y N. A. Sims, “Model structure and control of bone remodeling: A theoretical study,” Bone, vol. 43, no. 2, pp. 249-263, 2008. [En línea]. Disponible en: https://doi.org/10.1016/j.bone.2008.04.047.
J. Martínez-Reina, J. Domínguez, y J. M. García-Aznar, “A bone remodelling model including the effects of damage,” Journal of Theoretical Biology, vol. 256, no. 2, pp. 351-363, 2009. [En línea]. Disponible en: https://doi.org/10.1016/j.jtbi.2008.09.041.
H. M. Frost, “Bone's mechanostat: A 2003 update,” The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol. 275A, no. 2, pp. 1081-1101, 2003. [En línea]. Disponible en: https://doi.org/10.1002/ar.a.10119.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter