Finite element analysis of the osseointegration process in compression osteosynthesis plates

Authors

DOI:

https://doi.org/10.17533/udea.redin.20251191

Keywords:

Simulation techniques, Biomedical engineering, Research and experimental development

Abstract

Musculoskeletal injuries are a leading cause of disability worldwide. Orthopedic surgery commonly employs osteosynthetic devices, such as compression plates, which require proper osseointegration for successful outcomes. Although titanium and its alloys are widely used for their mechanical strength and biocompatibility, limited osseointegration can result in clinical complications and require surgical reintervention. In this study, an integrated computational model combining finite element analysis in COMSOL with a biological module in MATLAB was developed to simulate the osseointegration process in titanium compression plates. The model enabled the assessment of how plate geometry and mechanical stress distribution directly influence cellular responses at the fracture site. Results revealed localized compressive stresses along the fracture line, with a maximum value of 140 MPa. This stress promoted bone formation by day 40, with complete consolidation occurring around day 100. These findings suggest that the proposed model can serve as a predictive tool for optimizing osteosynthesis material design and improving clinical outcomes, with applications in the development of next-generation implants.

|Abstract
= 41 veces | PDF
= 16 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos David Becerra-Gutiérrez, Universidad Autónoma de Bucaramanga

Student, Biomedical Engineering

Mateo Escobar-Jaramillo, Universidad Autónoma de Bucaramanga

Associate professor – Faculty of Biomedical Engineering

References

International Osteoporosis Foundation, “Annual Report 2023.” 2023. [En línea]. Disponible en: https://www.osteoporosis.foundation/annual-report-2023.

MedPage Today, "Osteoporosis and its impact on health systems,". [En línea]. Disponible en: https://www.medpagetoday.com/medical-journeys/osteoporosis/108129.

Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT), “Tratamiento quirúrgico de las fracturas de cadera,” Manual del residente. [En línea]. Disponible en: https://unitia.secot.es/web/manual_residente/CAPITULO%2018.pdf.

N. Vilabrú Pagès y M. Baraldés Canal, "Osteosíntesis en el tratamiento de las fracturas: placas," en Manual del Residente, L. Marull Serra, Coord., Hospital Universitari “Doctor Josep Trueta” de Girona, [Online]. Available: https://unitia.secot.es/web/manual_residente/CAPITULO%2018.pdf.

S. Maldonado, S. Borchers, R. Findeisen, y F. Allgower, Mathematical modeling and analysis of force-induced bone growth, 2006.

Biovac, “La osteointegración de implantes de Titanio,” 2022. [En línea]. Disponible en: https://biovac.es/la-osteointegracion-de-implantes-de-titanio/.

A. M. Material, "Introduction to Ti-6Al-4V Titanium Alloy," AM Material. [Online]. Available: https://am-material.com/es/news/introduction-to-ti-6al-4v-titanium-alloy/.

E. F. Morgan, G. U. Unnikrisnan, y A. I. Hussein, "Bone Mechanical Properties in Healthy and Diseased States," Annual Review of Biomedical Engineering, vol. 20, pp. 119–143, 2018. [En línea]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053074/.

R. Huiskes, R. Ruimerman, G. H. van Lenthe, y J. D. Janssen, “Effects of mechanical forces on maintenance and adaptation of form in trabecular bone,” Nature, vol. 405, no. 6787, pp. 704-706, 2000. [En línea]. Disponible en: https://doi.org/10.1038/35015116.

H. Weinans, R. Huiskes, y H. J. Grootenboer, “The behavior of adaptive bone-remodeling simulation models,” Journal of Biomechanics, vol. 25, no. 12, pp. 1425-1441, 1992. [En línea]. Disponible en: https://doi.org/10.1016/0021-9290(92)90055-5.

V. Lemaire, F. L. Tobin, L. D. Greller, C. R. Cho, y L. J. Suva, “Modeling the interactions between osteoblast and osteoclast activities in bone remodeling,” Journal of Theoretical Biology, vol. 229, no. 3, pp. 293-309, 2004. [En línea]. Disponible en: https://doi.org/10.1016/j.jtbi.2004.03.023.

P. Pivonka, J. Zimak, D. W. Smith, B. S. Gardiner, C. R. Dunstan, y N. A. Sims, “Model structure and control of bone remodeling: A theoretical study,” Bone, vol. 43, no. 2, pp. 249-263, 2008. [En línea]. Disponible en: https://doi.org/10.1016/j.bone.2008.04.047.

J. Martínez-Reina, J. Domínguez, y J. M. García-Aznar, “A bone remodelling model including the effects of damage,” Journal of Theoretical Biology, vol. 256, no. 2, pp. 351-363, 2009. [En línea]. Disponible en: https://doi.org/10.1016/j.jtbi.2008.09.041.

H. M. Frost, “Bone's mechanostat: A 2003 update,” The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol. 275A, no. 2, pp. 1081-1101, 2003. [En línea]. Disponible en: https://doi.org/10.1002/ar.a.10119.

Downloads

Published

2025-11-13

How to Cite

Becerra-Gutiérrez, C. D., & Escobar-Jaramillo, M. (2025). Finite element analysis of the osseointegration process in compression osteosynthesis plates. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20251191

Issue

Section

Research paper