Super-resolución espacial en sistemas ópticos hiperespectrales de compresión basados en aperturas codificadas
DOI:
https://doi.org/10.17533/udea.redin.16306Palabras clave:
súper-resolución, imágenes hiperespectrales, compressive sensing, CASSI, multicaptura, sistemas basados en aperturas codificadasResumen
El sistema de adquisición de imágenes espectrales basado en apertura codificada de única captura (CASSI) es una arquitectura óptica notable, que permite capturar la información espectral de una escena utilizando proyecciones bidimensionales codificadas. Las proyecciones en CASSI se encuentran ubicadas de tal manera, que cada medición contiene únicamente información espectral específica de una región del cubo de datos. La resolución espacial en el sistema CASSI depende altamente de la resolución del detector utilizado; así, imágenes de alta resolución requieren detectores de alta resolución, que a su vez demandan altos costos. Como solución a este problema, en éste artículo se propone un modelo óptico de súper-resolución para el mejoramiento de la resolución espacial de imágenes hiperespectrales denominado SR-CASSI. Súper-resolución espacial se logra tras solucionar un problema inverso utilizando un algoritmo de compressive sensing (CS), que tiene como entrada las mediciones codificadas de baja resolución capturadas. Éste modelo permite la reconstrucción de cubos de datos hiperespectrales súper resueltos, cuya resolución espacial es aumentada significativamente. Los resultados de las simulaciones muestran un mejoramiento de más de 8 dB en PSNR cuando el modelo propuesto es utilizado.
Descargas
Citas
R. Lin, B. Dennis, G. Hurford, D. Smith, A. Zehnder, P. Harvey, D. Curtis, D. Pankow, P. Turin, M. Bester, A. Csillaghy, M. Lewis, N. Madden, H. van Beek, M. Appleby, T. Raudorf, J. McTiernan, R. Ramaty, E. Schmahl, R. Schwartz, S. Krucker, R. Abiad, T. Quinn, P. Berg, M. Hashii, R. Sterling, R. Jackson, R. Pratt, R. Campbell, D. Malone, D. Landis, C. Barrington, S. Slassi, C. Cork, D. Clark, D. Amato, L. Orwig, R. Boyle, I. Banks, K. Shirey, A. Tolbert, D. Zarro, F. Snow, K. Thomsen, R. Henneck, A. McHedlishvili, P. Ming, M. Fivian, J. Jordan, R. Wanner, J. Crubb, J. Preble, M. Matranga, A. Benz, H. Hudson, R. Canfield, G. Holman, C. Crannell, T. Kosugi, A. Emslie, N. Vilmer, J. Brown, C. Johns-Krull, M. Aschwanden, T. Metcalf, A. Conway. “The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI)”. Solar Physics. Vol. 210. 2002. pp. 3-32. DOI: https://doi.org/10.1007/978-94-017-3452-3_1
W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, B. Huang. “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft”. Hyperspectral Remote Sensing of the Land and Atmosphere. Vol. 4151. 2001. pp. 94-102. DOI: https://doi.org/10.1117/12.416996
P. Ye, J. Paredes, G. Arce, Y. Wu, C. Chen, D. Prather. Compressive confocal microscopy. Proceeding of International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan. 2009. pp. 429-432. DOI: https://doi.org/10.1109/ICASSP.2009.4959612
C. Stellman, F. Olchowski, J. Michalowicz. War horse (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment). Proceedings SPIE 4379, Automatic Target Recognition XI. Orlando, USA. Vol. 4379. 2001, pp. 339-346. DOI: https://doi.org/10.1117/12.445382
T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, S. Andersson. “Quantifying the absorption and reduced scattering coefficients of tissue-like turbid media over a broad spectral range with noncontact fourier-transform hyperspectral imaging”. Applied Optics. Vol. 39. 2000. pp. 6487-6497. DOI: https://doi.org/10.1364/AO.39.006487
D. Kittle. Compressive spectral imaging. Master’s thesis. Duke University. Durham, North Carolina, USA. 2010.
N. Hagen, R. Kester, L. Gao, T. Tkaczyk. “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems”. Optical Engineering. Vol. 51. 2011. pp. 111702-1 - 111702-7. DOI: https://doi.org/10.1117/1.OE.51.11.111702
E. Candès, J. Romberg, T. Tao. “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information”. IEEE Transactions on Information Theory. Vol. 52. 2006. pp. 489-509. DOI: https://doi.org/10.1109/TIT.2005.862083
E. Candès, T. Tao. “Near-optimal signal recovery from random projections: Universal encoding strategies?”. IEEE Transactions on Information Theory. Vol. 52. 2006. pp. 5406-5425. DOI: https://doi.org/10.1109/TIT.2006.885507
D. Donoho. “Compressed sensing”. IEEE Transactions on Information Theory. Vol. 52. 2006. pp. 1289-1306. DOI: https://doi.org/10.1109/TIT.2006.871582
E. Christophe, C. Mailhes, P. Duhamel. “Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3D wavelet coding”. IEEE Transactions on Image Processing. Vol. 17. 2008. pp. 2334-2346. DOI: https://doi.org/10.1109/TIP.2008.2005824
P. Dragotti, G. Poggi, A. Ragozini. “Compression of multispectral images by three-dimensional SPIHT algorithm”. IEEE Transactions on Geoscience and Remote Sensing. Vol. 38. 2000. pp. 416-428. DOI: https://doi.org/10.1109/36.823937
A. Wagadarikar, R. John, R. Willett, D. Brady. “Single disperser design for coded aperture snapshot spectral imaging”. Applied Optics. Vol. 47. 2008. pp. B44-B51. DOI: https://doi.org/10.1364/AO.47.000B44
H. Arguello, H. Rueda, Y. Wu, D. Prather, G. Arce, “Higher-order computational model for coded aperture spectral imaging.” Appl. Opt. Vol. 52. 2013. pp. D12-D21. DOI: https://doi.org/10.1364/AO.52.000D12
H. Arguello, C. Correa, G. Arce, “Fast lapped block reconstructions in compressive spectral imaging,” Appl. Opt. Vol. 52. 2013. pp. D32-D45. DOI: https://doi.org/10.1364/AO.52.000D32
Y. Wu, I. Mirza, G. Arce, D. Prather. “Development of a digital-micro-mirror-device-based multishot snapshot spectral imaging system”. Optics Letters. Vol. 36. 2011. pp. 2692-2694. DOI: https://doi.org/10.1364/OL.36.002692
H. Arguello, G. Arce. “Code aperture optimization for spectrally agile compressive imaging”. Journal of the Optical Society of America A. Vol. 28. 2011. pp. 2400- 2413. DOI: https://doi.org/10.1364/JOSAA.28.002400
H. Arguello, C. Correa, G. Arce. “Code aperture optimization by concentration of measure in compressive spectral imaging”. Journal of the Optical Society of America A. USA. 2012.
D. Kittle, K. Choi, A. Wagadarikar, D. Brady. “Multi-frame image estimation for coded aperture snapshot spectral imagers”. Applied Optics. Vol. 49. 2010. pp. 6824-6833. DOI: https://doi.org/10.1364/AO.49.006824
H. Arguello, G. Arce. Restricted Isometry Property in coded aperture compressive spectral imaging. IEEE Statistical Signal Processing Workshop. Ann Arbor, MI, USA. 2012. pp. 716-719. DOI: https://doi.org/10.1109/SSP.2012.6319803
H. Arguello, G. Arce. Spectrally Selective Compressive Imaging by Matrix Analysis. OSA Optics and Photonics Congress. Monterey, CA, USA. 2012. pp. CM4B.5. DOI: https://doi.org/10.1364/COSI.2012.CM4B.5
H. Arguello, G. Arce. Code Aperture Agile Spectral Imaging (CAASI). Imaging and Applied Optics Congress (OSA Optics & Photonics Congress). Toronto, Canada, 2011. pp. ITuA4. DOI: https://doi.org/10.1364/ISA.2011.ITuA4
R. Willett, R. Marcia, J. Nichols. “Compressed sensing for practical optical imaging systems: A tutorial”. Optical Engineering. Vol. 50. 2011. pp. 072601 1-13. DOI: https://doi.org/10.1117/1.3596602
M. Duarte, R. Baraniuk. Kronecker product matrices for compressive sensing. IEEE International Conference on Acoustics Speech and Signal Processing. Dallas, USA. 2010. pp. 3650-3653. DOI: https://doi.org/10.1109/ICASSP.2010.5495900
H. Arguello, G. Arce. “Rank minimization code aperture design for spectrally selective compressive imaging”. IEEE Transactions on Image Processing. Vol. 22. 2012. pp. 941-954. DOI: https://doi.org/10.1109/TIP.2012.2222899
M. Figueiredo, R. Nowak, S. Wright. “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems”. IEEE Journal of Selected Topics in Signal Processing. Vol. 1. 2007. pp. 586-597. DOI: https://doi.org/10.1109/JSTSP.2007.910281
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.