Marco experimental para microrredes a escala de laboratorio
DOI:
https://doi.org/10.17533/udea.redin.n81a02Palabras clave:
microrredes, redes inteligentes, fuentes distribuidasResumen
Este artículo presenta una propuesta de un banco de pruebas de microrredes para uso en laboratorio. El objetivo es proporcionar alta flexibilidad utilizando un enfoque modular con un hardware común para la mayoría de las tareas. El marco experimental propuesto para microrredes a escala de laboratorio proporciona los requisitos para enseñanza e investigación. Esto se logra con una etapa de electrónica de potencia reconfigurable, para pruebas y diseños de nuevas topologías. Permite probar algoritmos en los distintos niveles de la estructura jerárquica de la microrred. Da acceso a la emulación y simulación de elementos encontrados comúnmente en una microrred y a la programación de bajo nivel de los protocolos de comunicación para estudiar el canal de comunicación. La unidad de procesamiento en cada módulo, llamado controlador local, utiliza un procesador digital de señales de alto rendimiento (DSP). Esta unidad de procesamiento permite la reconfiguración de cada módulo para asumir cualquier tarea en la microrred; es decir, como cargas controlables, almacenamiento de energía, generación eólica, generación fotovoltaica, etc. El hardware propuesto se probó operando como emulador de los diferentes subsistemas. Las comunicaciones con un controlador central microrred (MCC) se realizan mediante procesadores integrados estándar, capaces de implementar los protocolos de comunicación adecuados para ambientes de microrred.
Descargas
Citas
Varun, I. Bhat, and R. Prakash, “LCA of renewable energy for electricity generation systems—a review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 5, pp. 1067-1073, 2009.
International Energy Agency (IEA), World Energy Outlook 2014 FACTSHEET. [Online]. Available: http://www.worldenergyoutlook.org/media/weowebsite/2014/WEO2014FactSheets.pdf. Accessed on: Mar. 12, 2016.
D. Cornforth, A. Berry, and T. Moore, “Building a microgrid laboratory,” in IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), Jeju, South Korea, 2011, pp. 2035–2042.
R. Lasseter et al., “Certs microgrid laboratory test bed,” IEEE Transactions on Power Delivery, vol. 26, no. 1, pp. 325–332, 2011.
S. Krishnamurthy, T. Jahns, and R. Lasseter, “The operation of diesel gensets in a certs microgrid,” in IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, USA, 2008, pp. 1–8.
R. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in IEEE 35th Annual Power Electronics Specialists Conference (PESC), Aachen, Germany, 2004, pp. 4285–4290.
R. Panora, J. Gehret, and P. Piagi, “Design and testing of an inverter-based combined heat and power module for special application in a microgrid,” in IEEE Power Engineering Society General Meeting, Tampa, USA, 2007, pp. 1–8.
Opal-RT Technologies, Opal-RT Technologies. [Online]. Available: http://www.opalrt.com. Accessed on: Mar. 14, 2016.
F. Guo et al., “Real time simulation for the study on smart grid,” in IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, USA, 2011, pp. 1013–1018.
P. Parikh, M. Kanabar, and T. Sidhu, “Opportunities and challenges of wireless communication technologies for smart grid applications,” in IEEE Power and Energy Soc. General Meeting, Minneapolis, USA, 2010, pp. 1–7.
M. Kezunovic, “Teaching the smart grid fundamentals using modeling, simulation, and hands-on laboratory experiments,” in IEEE Power and Energy Society General Meeting, Minneapolis, USA, 2010, pp. 1–6.
OPNET Technologies, Inc., OPNET Modeler, OPNET Technologies. [Online]. Available: http://www.opnet.com. Accessed on: Mar. 14, 2016.
E. Prieto, M. Cheah, R. Villafafila, O. Gomis, and A. Junyent, “Development of a laboratory platform for testing new solutions to integrate renewable energy sources in power systems,” in 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2013, pp. 1–10.
M. Liu, Z. Ding, F. Quilumba, W. J. Lee, and D. Wetz, “Using a microgrid test bed to evaluate the strategies for seamless renewable energy integration,” in IEEE/IAS 50th Industrial & Commercial Power Systems Technical Conference (I&CPS), Fort Worth, USA, 2014, pp. 1–9.
Y. Che, Z. Yang, and K. Cheng, “Construction, operation and control of a laboratory-scale microgrid,” in 3rd Int. Conference on Power Electronics Systems and Applications (PESA), Hong Kong, China, 2009, pp. 1–5.
C. Wang et al., “A highly integrated and reconfigurable microgrid testbed with hybrid distributed energy sources,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 451–459, 2016.
M. Rasheduzzaman, B. Chowdhury, and S. Bhaskara, “Converting an old machines lab into a functioning power network with a microgrid for education,” IEEE Trans. on Power Systems, vol. 29, no. 4, pp. 1952–1962, 2014.
M. Barnes et al., “Microgrid laboratory facilities,” in International Conference on Future Power Systems, Amsterdam, Netherlands, 2005, pp. 1–6.
J. Weimer et al., “A virtual laboratory for micro-grid information and communication infrastructures,” in 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), Berlin, Germany, 2012, pp. 1–6.
F. Katiraei, C. Abbey, S. Tang, and M. Gauthier, “Planned islanding on rural feeders 2014; utility perspective,” in IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, USA, 2008, pp. 1–6.
N. Lidula and A. Rajapakse, “Microgrids research: A review of experimental microgrids and test systems,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 186–202, 2011.
P. Nguyen, W. Kling, and P. Ribeiro, “Smart power router: A flexible agent-based converter interface in active distribution networks,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 487–495, 2011.
I. Mitra, T. Degner, and M. Braun, “Distributed generation and microgrids for small island electrification in developing countries: a review,” Solar Energy Society of India, vol. 18, no. 1, pp. 6–20, 2008.
I. Araki, M. Tatsunokuchi, H. Nakahara, and T. Tomita, “Bifacial {PV} system in aichi airport-site demonstrative research plant for new energy power generation,” Solar Energy Materials and Solar Cells, vol. 93, no. 6–7, pp. 911-916, 2009.
S. Morozumi, H. Nakama, and N. Inoue, “Demonstration projects for grid-connection issues in Japan,” e & i Elektrotechnik und Informationstechnik, vol. 125, no. 12, pp. 426–431, 2008.
H. Hatta and H. Kobayashi, “A study of centralized voltage control method for distribution system with distributed generation,” in 19th International Conference on Electricity Distribution, Vienna, Austria, 2007, pp. 1–4.
M. Meiqin et al., “Testbed for microgrid with multi-energy generators,” in Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, Canada, 2008, pp. 637-640.
R. Ray, D. Chatterjee, and S. Goswami, “Reduction of voltage harmonics using optimisation-based combined approach,” IET Power Electronics, vol. 3, no. 3, pp. 334–344, 2010.
F. Huerta, J. K. Gruber, M. Prodanovic, and P. Matatagui, “Power-hardware-in-the-loop test beds: evaluation tools for grid integration of distributed energy resources,” IEEE Industry Applications Magazine, vol. 22, no. 2, pp. 18–26, 2016.
S. Rajakaruna and S. Islam, “Building a state of the art laboratory for teaching and research in renewable electric energy systems and microgrids,” in IEEE Power and Energy Society General Meeting, San Diego, USA, 2011, pp. 1–6.
D. Mah, P. Hills, V. Li, and R. Balme, Smart Grid Applications and Developments, 1st ed. London, UK: Springer, 2014.
T. Kerekes, M. Liserre, R. Teodorescu, C. Klumpner, and M. Sumner, “Evaluation of three-phase transformerless photovoltaic inverter topologies,” IEEE Transactions on Power Electronics, vol. 24, no. 9, pp. 2202–2211, 2009.
T. Schütze, G. Borghoff, M. Wissen, and A. Höhn, Defining the future of IGBT high-power modules [Online]. Available: http://electronicsmaker.com/defining-the-future-of-igbt-high-power-modules. Accessed on: Mar. 15, 2016.
A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped pwm inverter,” IEEE Transactions on Industry Applications, vol. IA-17, no. 5, pp. 518–523, 1981.
F. Z. Peng, “Z-source inverter,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 504–510, 2003.
F. Peng, X. Yuan, X. Fang, and Z. Qian, “Z-source inverter for adjustable speed drives,” IEEE Power Electronics Letters, vol. 99, no. 2, pp. 33–35, 2003.
M. Hanif, M. Basu, and K. Gaughan, “Understanding the operation of a z-source inverter for photovoltaic application with a design example,” IET Power Electronics, vol. 4, no. 3, pp. 278–287, 2011.
L. Yang, D. Qiu, B. Zhang, and G. Zhang, “High-performance quasi-z-source inverter with low capacitor voltage stress and small inductance,” IET Power Electronics, vol. 8, no. 6, pp. 1061–1067, 2015.
J. Khajesalehi, K. Sheshyekani, M. Hamzeh, and E. Afjei, “High-performance hybrid photovoltaic -battery system based on quasi-z-source inverter: application in microgrids,” IET Generation, Transmission & Distribution, vol. 9, no. 10, pp. 895–902, 2015.
M. K. Nguyen, Y. C. Lim, and S. J. Park, “A comparison between single-phase quasi- z -source and quasi-switched boost inverters,” IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6336–6344, 2015.
Analog Devices, Inc., ADSP-21369 EZ-KIT Lite Evaluation System Manual, 2nd ed. Norwood, Massachusetts, USA: Analog Devices, 2012.
Institute of Electrical and Electronics Engineers (IEEE), IEEE draft standard profile for use of IEEE 1588 precision time protocol in power system applications, IEEE Standard PC37.238/D6, 2014.
International Electrotechnical Commission (IEC), Communication networks and systems for power utility automation - Part 1: Introduction and overview, Standard IEC-61850-1:2013, 2013.
J. Restrepo, J. Aller, J. Viola, A. Bueno, and T. G. Habetler, “Optimum space vector computation technique for direct power control,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1637–1645, 2009.
M. Aredes, H. Akagi, E. Watanabe, E. Vergara, and L. Encarnacao, “Comparisons between the p–q and p–q–r theories in three-phase four-wire systems,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 924–933, 2009.
S. Pekarek, O. Wasynczuk, and H. Hegner, “An efficient and accurate model for the simulation and analysis of synchronous machine/converter systems,” IEEE Transactions on Energy Conversion, vol. 13, no. 1, pp. 42–48, 1998.
J. M. Aller, Máquinas eléctricas rotativas: Introducción a la teoría general, 1st ed. Caracas, Venezuela: Equinoccio, 2006.
P. Krause, O. Wasynczuk, and S. Pekarek, “Synchronous Machines,” in Electromechanical Motion Devices, 2nd ed. Piscataway, New Jersey, USA: Wiley / IEEE Press, 2012, pp. 287–343.
X. Tan, Q. Li, and H. Wang, “Advances and trends of energy storage technology in microgrid,” International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp. 179-191, 2013.
S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of Power Sources, vol. 96, no. 1, pp. 113-120, 2001.
G. Spagnuolo et al., “Control of photovoltaic arrays: Dynamical reconfiguration for fighting mismatched conditions and meeting load requests,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 62–76, 2015.
N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power electronics and control techniques for maximum energy harvesting in photovoltaic systems, 1st ed. Boca Raton, Florida, USA: CRC Press, 2012.
G. Petrone, G. Spagnuolo, and M. Vitelli, “Analytical model of mismatched photovoltaic fields by means of lambert w-function,” Solar Energy Materials and Solar Cells, vol. 91, no. 18, pp. 1652-1657, 2007.
M. Orozco, J. Ramírez, G. Spagnuolo, and C. Ramos, “A technique for mismatched {PV} array simulation,” Renewable Energy, vol. 55, pp. 417-427, 2013.
J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind energy explained: theory, design and application, 3rd ed. West Sussex, UK: John Wiley & Sons, 2010.
S. Heier, Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, 3rd ed. West Sussex, UK: John Wiley & Sons, 2014.
R. Saiju, G. Arnold, and S. Heier, “Voltage dips compensation by wind farm(s) equipped with power converters as decoupling element,” in European Conference on Power Electronics and Applications, Dresden, Germany, 2005, pp. 1–9.
J. Doke, Example files for “programming with MATLAB” webinar, 2013. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/43908-example-files-for--programming-with-matlab--webinar. Accessed on: Feb. 11, 2016.
A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1963-1976, 2012.
J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy, and R. Teodorescu, “Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1271–1280, 2013.
B. Sahan, S. V. Araújo, C. Nöding, and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Transactions on Power Electronics, vol. 26, no. 8, pp. 2304–2318, 2011.
B. Exposto et al., “Three-phase current-source shunt active power filter with solar photovoltaic grid interface,” in IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 2015, pp. 1211–1215.
H. Han et al., “Review of power sharing control strategies for islanding operation of ac microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 200–215, 2016.
J. M. Guerrero, L. Hang, and J. Uceda, “Control of distributed uninterruptible power supply systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2845–2859, 2008.
T. Vandoorn, J. D. Kooning, B. Meersman, and L. Vandevelde, “Review of primary control strategies for islanded microgrids with power-electronic interfaces,” Renewable and Sustainable Energy Reviews, vol. 19, pp. 613–628, 2013.
L. E. Luna, H. Torres, and F. A. Pavas, “Spinning reserve analysis in a microgrid,” Dyna, vol. 82, no. 192, pp. 85–93, 2015.
A. Mehrizi and R. Iravani, “Potential-function based control of a microgrid in islanded and grid-connected modes,” IEEE Transactions on Power Systems, vol. 25, no. 4, pp. 1883–1891, 2010.
A. Bidram, A. Davoudi, F. L. Lewis, and Z. Qu, “Secondary control of microgrids based on distributed cooperative control of multi-agent systems,” IET Generation, Transmission & Distribution, vol. 7, no. 8, pp. 822–831, 2013.
M. Ding, Y. Y. Zhang, M. Q. Mao, W. Yang, and X. P. Liu, “Operation optimization for microgrids under centralized control,” in 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Hefei, China, 2010, pp. 984–987.
L. Meng, J. M. Guerrero, J. C. Vasquez, F. Tang, and M. Savaghebi, “Tertiary control for optimal unbalance compensation in islanded microgrids,” in 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain, 2014, pp. 1–6.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.