Fuerzas de atracción y repulsión en superconductores YBCO texturizados y sinterizados: un estudio comparativo

Autores/as

  • Diego Andrés Arias-Arana Universidad Nacional de Colombia
  • Juan Diego Rojas-Zambrano Universidad Nacional de Colombia
  • Álvaro Mariño-Camargo Universidad Nacional de Colombia https://orcid.org/0000-0002-7629-5891

DOI:

https://doi.org/10.17533/udea.redin.20191044

Palabras clave:

investigación aplicada, temperatura, medición

Resumen

En este artículo medimos las fuerzas de atracción (suspensión) y repulsión (levitación) producidas por la interacción entre un imán permanente y diferentes superconductores. Las medidas de la fuerza de interacción HTS-PM fueron realizadas en un dispositivo sencillo, confiable y de bajo costo. Los resultados obtenidos fueron analizados utilizando el Modelo de Estado-Crítico propuesto por Bean bajo la suposición de un campo magnético uniforme aplicado al superconductor. Se utilizaron dos muestras superconductoras de YBa2Cu3O7-δ preparadas por el método de reacción de estado sólido (S) y por el método de texturizado y fundido (MTG). Las muestras presentaron diferente comportamiento de histéresis en los regímenes de field cooling (FC) y  zero field cooling (ZFC). Los fenómenos de levitación y suspensión se observaron en la muestra MTG; sin embargo, la muestra sinterizada con deficiencias de oxígeno ( ) sólo mostró una ligera fuerza de levitación, aunque no de suspensión, esta última propiedad atribuida a un  anclaje del flujo magnético más eficiente. Se determinó la densidad de corriente crítica en ambas muestras a  partir del máximo gap de la fuerza ( ) en el régimen FC. Los valores obtenidos están entre 43.00 A/cm2 y 2,758 A/cm2 para la muestra sinterizada y MTG respectivamente. Las diferencias observadas entre las dos muestras coinciden con las determinadas a partir de medidas de magnetización, lo cual indica que estas medidas podrían utilizarse para una rápida caracterización de muestras superconductoras policristalinas.

|Resumen
= 427 veces | PDF (ENGLISH)
= 380 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diego Andrés Arias-Arana, Universidad Nacional de Colombia

Grupo de Superconductividad y Nuevos Materiales, Departamento de Física.

Juan Diego Rojas-Zambrano, Universidad Nacional de Colombia

Grupo de Superconductividad y Nuevos Materiales, Departamento de Física.

Álvaro Mariño-Camargo, Universidad Nacional de Colombia

Grupo de Superconductividad y Nuevos Materiales, Departamento de Física.

Citas

K. Nagashima, H. Seino, N. Sakai, and M. Murakami, “Superconducting magnetic bearing for a flywheel energy storage system using superconducting coils and bulk superconductors,” Physica C: Superconductivity, vol. 469, no. 15-20, October 15 2009. [Online]. Available: https://doi.org/10.1016/j.physc.2009.05.245

Y. Han, B. Park, S. Jung, and S. Han, “Study of superconductor bearings for a 35 kwh superconductor flywheel energy storage system,” Physica C: Superconductivity, vol. 483, December 14 2012. [Online]. Available: https://doi.org/10.1016/j.physc.2009.05.245

Y. Arai, H. Seino, K. Yoshizawa, and K. Nagashima, “Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system,” Physica C: Superconductivity, vol. 494, November 15 2013. [Online]. Available: https://doi.org/10.1016/j.physc.2009.05.245

R. Byer, R. Begley, and G. Stewart, “Superconducting, magnetically levitated merry-go-round,” American Journal of Physics, vol. 42, no. 2, February 1974. [Online]. Available: https://doi.org/10.1119/1.1987626

J. Wang and et al, “The first man-loading high temperature superconducting maglev test vehicle in the world,” Physica C: Superconductivity, vol. 378-381, no. Part 1, October 1 2002. [Online]. Available: https://doi.org/10.1016/S0921-4534(02)01548-4

W. Wang and et al, “Levitation characteristics of a high-temperature superconducting maglev system for launching space vehicles,” Physica C: Superconductivity and its Applications, vol. 455, no. 1-2, May 1 2007. [Online]. Available: https://doi.org/10.1016/j.physc.2007.01.025

Z. Deng and et al, “Studies on the levitation height decay of the high temperature superconducting maglev vehicle,” Physica C: Superconductivity and its Applications, vol. 463-465, October 1 2007. [Online]. Available: https://doi.org/10.1016/j.physc.2007.02.050

Z. Deng and et al, “Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway,” Materials Science and Engineering: B, vol. 151, no. 1, June 15 2008. [Online]. Available: https://doi.org/10.1016/j.mseb.2008.03.011

Y. Han and et al, “Design and characteristics of a superconductor bearing,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, June 2005. [Online]. Available: https://doi.org/10.1109/TASC.2005.849623

A. Cansiz and I. Yildizer, “The design considerations for a superconducting magnetic bearing system,” Cryogenics, vol. 63, September 2014. [Online]. Available: https://doi.org/10.1016/j.cryogenics.2014.06.006

S. Wang and et al, “An update high-temperature superconducting maglev measurement system,” IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, June 2007. [Online]. Available: https://doi.org/10.1109/TASC.2007.899257

S. Chen and et al, “A new 3d levitation force measuring device for rebco bulk superconductors,” Physica C: Superconductivity and its Applications, vol. 496, January 15 2014. [Online]. Available: https://doi.org/10.1016/j.physc.2013.07.004

X. Zhang, Y. Zhou, and J. Zhou, “Three-dimensional measurements of forces between magnet and superconductor in a levitation system,” Physica C: Superconductivity and its Applications, vol. 467, no. 1-2, December 1 2007. [Online]. Available: https://doi.org/10.1016/j.physc.2007.09.010

F. Moon, M. Yanoviak, and R. Ware, “Hysteretic levitation forces in superconducting ceramics,” Applied Physics Letters, vol. 52, no. 18, June 4 1988. [Online]. Available: https://doi.org/10.1063/1.99700

T. Torng and Q. Chen, “Magnetic forces for type II superconductors in a levitation field,” Journal of Applied Physics, vol. 73, no. 3, 1993. [Online]. Available: https://doi.org/10.1063/1.353286

J. Wang and et al, “Levitation force of a ybacuo bulk high temperature superconductor over a ndfeb guideway,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, march 2001. [Online]. Available: https://doi.org/10.1109/77.920136

S. Jin and et al, “Large magnetic hysteresis in a melt-textured Y-Ba-Cu-O superconductor,” Applied Physics Letters, vol. 54, no. 6, March 1989. [Online]. Available: https://doi.org/10.1063/1.101464

B. Savaskan, E. Taylan, S. Celik, K. Ozturk, and E. Yanmaz, “Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors,” Physica C: Superconductivity, vol. 502, July 15 2014. [Online]. Available: https://doi.org/10.1016/j.physc.2014.04.032

X. Zhang, Y. Zhou, and J. Zhou, “Influences of permanent magnets temperature characteristic on the levitation force of YBaCuO bulk superconductors,” Journal of Superconductivity and Novel Magnetism, vol. 25, no. 4, pp. 857–860, May 2012.

J. Zhou, X. Zhang, and Y. Zhou, “Temperature dependence of levitation force and its relaxation in a hts levitation system,” Physica C: Superconductivity, vol. 470, no. 5-6, March 1 2010. [Online]. Available: https://doi.org/10.1016/j.physc.2009.12.070

C. Navau and A. Sanchez, “Magnetic levitation of superconductors in the critical state,” Physical Review B, vol. 58, no. 2, July 1 1998. [Online]. Available: https://doi.org/10.1103/PhysRevB.58.963

A. Kordyuk, “Magnetic levitation for hard superconductors,” Journal of Applied Physics, vol. 83, no. 1, June 4 1998. [Online]. Available: https://doi.org/10.1063/1.366648

Y. Yang and X. Zheng, “Method for solution of the interaction between superconductor and permanent magnet,” Journal of Applied Physics, vol. 101, no. 11, June 15 2007. [Online]. Available: https://doi.org/10.1063/1.2745082

X. Wu and et al, “Modeling of hysteretic behavior of the levitation force between superconductor and permanent magnet,” Physica C: Superconductivity, vol. 486, March 15 2013. [Online]. Available: https://doi.org/10.1016/j.physc.2012.12.006

A. Sanchez and C. Navau, “Magnetic levitation of thin superconducting disks,” Physica C: Superconductivity, vol. 275, no. 3, february 20 1997. [Online]. Available: https://doi.org/10.1016/S0921-4534(96)00723-X

A. Sanchez and C. Navau, “Levitation force between a superconductor and a permanent magnet with cylindrical symmetry,” Physica C: Superconductivity and its Applications, vol. 364, November 2001. [Online]. Available: https://doi.org/10.1016/S0921-4534(01)00796-1

M. Qin, G. Li, H. Liu, S. Dou, and E. Brandt, “Calculation of the hysteretic force between a superconductor and a magnet,” Physical Review B, vol. 66, no. 2, July 2002. [Online]. Available: http://dx.doi.org/10.1103/PhysRevB.66.024516

D. Camacho, J. F. J. Mora, and X. Obradors, “Calculation of levitation forces in permanent magnet-superconductor systems using finite element analysis,” Journal of Applied Physics, vol. 82, no. 3, August 1997. [Online]. Available: https://doi.org/10.1063/1.365924

T. Akamatsu, H. Ueda, and A. Ishiyama, “Characteristics of levitating X-Y transporter using HTS bulks,” IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, july 2003. [Online]. Available: https://doi.org/10.1109/TASC.2003.813024

C. Navau, N. del Valle, and A. Sanchez, “Macroscopic modeling of magnetization and levitation of hard type-II superconductors: The critical-state model,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 1, February 2013. [Online]. Available: https://doi.org/10.1109/TASC.2012.2232916

S. Valenzuela, G. Jorge, and E. Rodríguez, “Measuring the interaction force between a high temperature superconductor and a permanent magnet,” American Journal of Physics, vol. 67, no. 11, November 1999. [Online]. Available: https://doi.org/10.1119/1.19160

C. Bean, “Magnetization of high-field superconductors,” Reviews of Moderns Physics, vol. 36, January 1964. [Online]. Available: https://doi.org/10.1103/RevModPhys.36.31

C. Bean, “Magnetization of hard superconductors,” Physical Review Letters, vol. 8, March 15 1962. [Online]. Available: https://doi.org/10.1103/PhysRevLett.8.250

E. Brandt, “Rigid levitation and suspension of high-temperature superconductors by magnets,” American Journal of Physics, vol. 58, no. 1, January 1990. [Online]. Available: https://doi.org/10.1119/1.16317

J. Jackson, Classical Electrodynamics, 3rd ed. USA: John Wiley & Sons, Inc., 1999.

J. Wu and H.Zhao, “Recent progress in fabrication, characterization, and application of hg-based oxide superconductors,” in High Temperature Superconductors, R. Bhattacharya and M. Parans, Eds. Great Britain, UK: Wiley-VCH Verlag GmbH & Co, 2010.

K. Salama and S. Sathyamurthy, “Melt texturing of YBCO for high current applications,” Applied Superconductivity, vol. 4, no. 10, October 1 1996. [Online]. Available: https://doi.org/10.1016/S0964-1807(97)00039-2

G. Goncalves and et al, “Experimental and theoretical levitation forces in a superconducting bearing for a real-scale maglev system,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 5, October 2011. [Online]. Available: https://doi.org/10.1109/TASC.2011.2159114

D. Dias, E. Silva, G. Sotelo, and R. Pestana, “Experimental validation of field cooling simulations for linear superconducting magnetic bearings,” Superconductor Science and Technology, vol. 23, no. 7, June 2010. [Online]. Available: https://doi.org/10.1088/0953-2048/23/7/075013

T. Matsushita, Flux Pinning in Superconductors, 2nd ed. New York, USA: Springer-Verlag Berlin Heidelberg, 2014.

M. Pérez and A. Mariño, “Efectos del anclaje de flujo magnético en superconductores de YBCO (123) dopados con Ag,” Momento, vol. 41, pp. 24–36, Dec. 2010.

A. Jha and N. Khare, “Strongly enhanced pinning force density in YBCO–BaTiO3 nanocomposite superconductor,” Physica C: Su-perconductivity, vol. 469, no. 14, July 15 2009. [Online]. Available: https://doi.org/10.1016/j.physc.2009.05.008

A. Harabor, P. Rotaru, N.Harabor, P. Nozar, and A. Rotaru, “Orthorhombic YBCO-123 ceramic oxide superconductor: Structural, resistive and thermal properties,” Ceramics International, vol. 45, no. 2, February 1 2019. [Online]. Available: https://doi.org/10.1016/j.ceramint.2018.07.272

U. Gokay and M. Tepe, “Studies on structural and magnetic properties of melt textured growth YBa2Cu3O7-x superconducting bulk materials,” Journal of Physics: Conference Series, vol. 153, no. 1, 2009. [Online]. Available: https://doi.org/10.1088/1742-6596/153/1/012011

S. Georgieva and T. Nedeltcheva, “Determination of the Oxygen Stoichiometry of Y1Ba2Cu3OY Superconductors with Different Oxygen Content,” Journal of the University of Chemical Technology and Metallurgy, vol. 47, no. 1, pp. 91–96, Jan. 2012.

T. Nedeltcheva, “Determination of oxygen stoichiometry in YBCO superconductors by spectrophotometry,” Analytica Chimica Acta, vol. 312, no. 2, August 30 1995. [Online]. Available: https://doi.org/10.1016/0003-2670(95)00237-T

S. Degoy and et al, “Oxygen content of YBaCuO thin films,” Physica C: Superconductivity, vol. 256, no. 3, January 10 1996. [Online]. Available: https://doi.org/10.1016/0921-4534(95)00666-4

J. Hull and A. Cansiz, “Vertical and lateral forces between a permanent magnet and a high-temperature superconductor,” Journal of Applied Physics, vol. 86, no. 11, August 1999. [Online]. Available: https://doi.org/10.1063/1.37170311

Publicado

2020-02-21

Cómo citar

Arias-Arana, D. A., Rojas-Zambrano, J. D., & Mariño-Camargo, Álvaro. (2020). Fuerzas de atracción y repulsión en superconductores YBCO texturizados y sinterizados: un estudio comparativo. Revista Facultad De Ingeniería Universidad De Antioquia, (96), 44–50. https://doi.org/10.17533/udea.redin.20191044

Artículos similares

También puede {advancedSearchLink} para este artículo.