Efecto del ángulo del quemador en la transferencia de calor de un horno de fritas

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210216

Palabras clave:

simulación CDF, horno de fusión, oxicombustión, transferencia de calor., tasa de recirculación

Resumen

En esta investigación se realizó un análisis numérico del efecto del grado de incidencia del quemador en la trasferencia de calor de un horno de fusión de fritas a escala industrial, el cual emplea un quemador de oxicombustión de gas natural de llama plana. Se evaluó el rendimiento térmico del horno prediciendo las distribuciones de temperatura, la recirculación de los gases de combustión y el flujo de calor hacia la carga, con configuraciones geométricas del quemador a 0°, 3,5°, 7°con respecto a la horizontal. Las simulaciones fueron llevadas a cabo utilizando el software ANSYS® Fluent. Se utilizó el modelo SFM , el modelo k-epsilon realizable y el modelo de ordenadas discretas para simular la combustión, la turbulencia y la radiación, respectivamente. Se empleó modelo WSGGM para el coeficiente de absorción de las especies de combustión. Se observó que la temperatura del horno estimada a través de las simulaciones es similar a la determinada en el proceso real. Adicionalmente, las simulaciones mostraron que para el ángulo de 7°, la llama choca contra la frita, lo cual podría generar deposición de partículas de frita en las paredes internas del horno, afectando la emisividad del material refractario. El ángulo de 3,5 grados mostró una mejor distribución de uniformidad del flujo de calor hacia la frita y de la taza de recirculación en comparación con el quemador ubicado a 0° y 7°.

|Resumen
= 777 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 536 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jorge Luis Rentería Peláez, Instituto Tecnológico Metropolitano

Docente, Ingeniería Electromecánica-Mecatrónica, Grupo Materiales Avanzados y Energía, Facultad de Ingeniería.

Luis Fernando Cardona Sepúlveda, Instituto Tecnológico Metropolitano

Docente, Ingeniería Electromecánica-Mecatrónica, Grupo de Materiales Avanzados y Energía, Facultad de Ingeniería.

Bernardo Argemiro Herrera Munera, Instituto Tecnológico Metropolitano

Docente, Ingeniería Electromecánica-Mecatrónica, Grupo Materiales Avanzados y Energía, Facultad de Ingeniería.

Citas

A. Barba, J. C. Jarque, M. Orduña, and M. F. Gazulla, “Kinetic model of the dissolution process of a zirconium white frit: Influence of the specific surface area,” Glas. Technol. Eur. J. Glas. Sci. Technol. Part A, vol. 57, no. 4, August 2016. [Online]. Available: https://doi.org/10.13036/17533546.57.4.033

M. G. Carvalho and M. Nogueira, “Modelling of glass melting industrial process,” J. Phys. Iv, vol. 3, no. C7, November 1993. [Online]. Available: https://doi.org/10.1051/jp4:19937208

Y. Tu and et al, “MILD combustion of natural gas using low preheating temperature air in an industrial furnace,” Fuel Process. Technol., vol. 156, February 2017. [Online]. Available: https://doi.org/10.1016/j.fuproc.2016.10.024

M. Falcitelli, S. Pasini, and L. Tognotti, “Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach,” Comput. Chem. Eng., vol. 26, no. 9, September 15 2002. [Online]. Available: https://doi.org/10.1016/S0098-1354(01)00771-2

B. Mayr, R. Prieler, M. Demuth, and C. Hochenauer, “The usability and limits of the steady flamelet approach in oxy-fuel combustions,” Energy, vol. 90, Part 2, October 2015. [Online]. Available: https://doi.org/10.1016/j.energy.2015.06.103

T. S. Possamai, R. Oba, and V. P. Nicolau, “Numerical and experimental thermal analysis of an industrial kiln used for frit production,” Appl. Therm. Eng., vol. 48, December 15 2012. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2012.05.025

T. S. Possamai, “Análise térmica numérica experimental de um forno de fusão de vidrados cerâmicos a gás natural,” Ph. D. Undergraduate, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, Brasil, 2014.

B. A. Herrera, L. H. Copete, J. M. Gutiérrez, and R. A. Ortega, “Simulación numérica de la combustión con aire enriquecido en un horno de fusión de fritas,” TecnoLógicas, November 2013. [Online]. Available: https://doi.org/10.22430/22565337.384

N. Perrin and et al, “Oxycombustion for coal power plants: Advantages, solutions and projects,” Appl. Therm. Eng., vol. 74, January 5 2015. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2014.03.074

R. Stanger and et al, “Oxyfuel combustion for CO2 capture in power plants,” Int. J. Greenh. Gas Control, vol. 40, September 2015. [Online]. Available: https://doi.org/10.1016/j.ijggc.2015.06.010

B. Mayr, R. Prieler, M. Demuth, M. Potesser, and C. Hochenauer, “Cfd and experimental analysis of a 115 kw natural gas fired lab-scale furnace under oxy-fuel and air-fuel conditions,” Fuel, vol. 159, November 1 2015. [Online]. Available: https://doi.org/10.1016/j.fuel.2015.07.051

G. M. Choi and M. Katsuki, “Advanced low NOx combustion using highly preheated air,” Energy Convers. Manag., vol. 42, no. 5, March 2001. [Online]. Available: https://doi.org/10.1016/S0196-8904(00)00074-1

V. C. and et al, “Blast furnace gas based combustion systems in steel reheating furnaces,” Energy Procedia, vol. 120, August 2017. [Online]. Available: https://doi.org/10.1016/j.egypro.2017.07.215

T. Görüney and et al, “Oxy-fuel tableware furnace with novel oxygenand natural gas preheating system,” in 77th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, S. Sundaram, Ed. John Wiley & Sons, 2017, pp. 73–82.

G. M. Choi and M. Katsuki, “Efficiency analysis of air-fuel and oxy-fuel combustion in a reheating furnace,” Int. J. Heat Mass Transf., vol. 121, June 2018. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.110

F. A. D. Oliveira, J. A. Carvalho, P. M. Sobrinho, and A. de Castro, “Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces,” Energy, vol. 78, December 15 2014. [Online]. Available: https://doi.org/10.1016/j.energy.2014.10.010

J. A. Wünning and J. G. Wünning, “Flameless oxidation to reduce thermal no-formation,” Prog. Energy Combust. Sci., vol. 23, no. 1, 1997. [Online]. Available: https://doi.org/10.1016/S0360-1285(97)00006-3

J. Li, X. Zhang, W. Yang, and W. Blasiak, “Effects of flue gas internal recirculation on NOx and SOx emissions in a co-firing boiler,” Int. J. Clean Coal Energy, vol. 2, no. 2, May 2013. [Online]. Available: https://doi.org/10.4236/ijcce.2013.22002

I. D. Palacio, P. N. Alvarado, and L. F. Cardona, “Numerical simulation of the flow and heat transfer in an electric steel tempering furnace,” Energies, vol. 13, no. 14, July 15 2020. [Online]. Available: https://doi.org/10.3390/en13143655

J. L. Suarez, A. A. Amell, and F. J. Cadavid, “Numerical analysis of internal recirculation into a radiant tube without internal ignition,” Rev. Soluciones Postgrado EIA, vol. 10, pp. 117–132, Jan. 2013.

K. P. Cheon and et al, “Premixed MILD combustion of propane in a cylindrical furnace with a single jet burner: Combustion and emission characteristics,” Energy and Fuels, vol. 32, no. 8, July 3 2018. [Online]. Available: https://doi.org/10.1021/acs.energyfuels.8b01587

J. H. Ferziger and M. Perić. (2002) Computational methods for fluid dynamics. [Springer]. [Online]. Available: https://bit.ly/2Juw7rS

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2nd ed. R.T. Edwards, Inc., 2005.

T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A new k- ϵ eddy viscosity model for high reynolds number turbulent flows,” Comput. Fluids, vol. 24, no. 3, March 1995. [Online]. Available: https://doi.org/10.1016/0045-7930(94)00032-T

C. Lezcano, A. Amell, and F. Cadavid, “Cálculo numérico del factor de recirculación en hornos de combustión sin llama,” DYNA, vol. 80, no. 180, pp. 144–151, Aug. 2013.

I. B. Celik, U. Ghia, P. J. Roache, and C. J. Freitas, “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. fluids Eng. ASME, vol. 130, no. 7, July 22 2008. [Online]. Available: https://doi.org/10.1115/1.2960953

J. D. Echavarría and A. A. Arrieta, “Estudio del régimen de combustión sin llama ante la variación de la carga térmica,” Ing. y Cienc., vol. 13, no. 25, pp. 185–208, Jan. 2017.

T. S. Possamai, R. Oba, and V. D. P. Nicolau, “Numerical simulation of a ceramic kiln used in frits,” in 20th International Congress of Mechanical Engineering, Gramado, RS, Brazil, 2009. [Online]. Available: https://bit.ly/3mm8G2z

T. S. Possamai and R. Oba and V. P. Nicolau, “Investigation and experimental measurement of an industrial melting furnace used to produce sodium silicate,” Appl. Therm. Eng., vol. 85, June 25 2015. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2015.04.019

Publicado

2021-02-01

Cómo citar

Rentería Peláez, J. L., Cardona Sepúlveda, L. F., & Herrera Munera, B. A. (2021). Efecto del ángulo del quemador en la transferencia de calor de un horno de fritas. Revista Facultad De Ingeniería Universidad De Antioquia, (100), 21–34. https://doi.org/10.17533/udea.redin.20210216