Simulation model for vehicle fleet growth to review public policies for transport demand management

Authors

DOI:

https://doi.org/10.17533/udea.redin.20250472

Keywords:

Simulation models, Transportation Demand Management, Public Policies, vehicle fleet

Abstract

The rapid increase in vehicle numbers within densely populated urban areas with limited road networks has become a significant challenge to city inhabitants. Driven by demographic and economic growth in recent decades, this trend has led to a gradual intensification of traffic congestion and longer commuting times, directly impacting productivity and quality of life. To counteract these negative impacts, governments have implemented Transport Demand Management (TDM) to restrict the circulation of private vehicles, discourage their acquisition, reduce traffic, and promote the use of public transport. However, due to the coercive characteristics of TDM, its effectiveness in discouraging the acquisition of private vehicles and its long-term effect on controlling the growth of urban vehicle fleets have been harshly questioned. This research uses recent scientific methodologies to estimate variations in vehicle fleet growth and identifies estimation variables in Medellín, using the publicly available city databases and a method for selecting the proper evaluation model. The selected methodology allowed us to evaluate the relationship between the age of the vehicles circulating on the road network, the demographic growth, and the increase in new vehicles. To do that, we proposed a model for an alternative public policy aimed at controlling vehicle fleet growth and the problems addressing traffic congestion in the coming years.

|Abstract
= 305 veces | PDF
= 95 veces|

Downloads

Download data is not yet available.

Author Biographies

José Alejandro Zapata-Celis, Universidad de Antioquia

Civil Engineer, master studente Facultad de Ingeniería

Yony Fernando Ceballos, Universidad de Antioquia

PhD in Engineering, Professor and Researcher Engineering Department

Julian Andrés Castillo-Grisales, Universidad de Antioquia

MSc. Ocasional Professor at the Institución Universitaria Digital de Antioquia. Professor and Researcher Engineering Department at the Universidad de Antioquia

 

References

X. Wang, D. Rodríguez, and A. Mahendra, “Support for market-based and command-and-control congestion relief policies in latin american cities: Effects of mobility, environmental health, and city-level factors,” Transportation Research Part A, vol. 146, 2021. [Online]. Available: http://doi.org/10.1016/j.tra.2020.12.004

T. Litman, “Mobility management innovative management strategies to transport problems,” in 25th Annual Southern African Transport Conference, SATC 2006 - 2010: Will Transport Infrastructure and Systems be Ready, vol. 2006, July 2006. [Online]. Available: http://hdl.handle.net/2263/6035

CAF, Desarrollo urbano y movilidad en américa latina. Caracas: SCIOTECA Espacio de Conocimiento Abierto, 2011. [Online]. Available: https://scioteca.caf.com/handle/123456789/419

AMVA, Plan Maestro de Movilidad para el Valle de Aburrá. Medellín, Colombia: Área Metropolitana del Valle de Aburrá, 2017. [Online]. Available: https://www.metropol.gov.co/movilidad/PlanMaestro/Plan%20Maestro%20de%20Movilidad.pdf

A. Köksal, S. E. Tekeli, S. A. Aksoy, A. Kiziltan, M. Kiziltan, N. Duran, and et al., “Long term characterization of the vehicle stock in turkey,” Transportation Research Part D: Transport and Environment, vol. 99, 2021. [Online]. Available: http://doi.org/10.1016/j.trd.2021.102988

R. Viri, J. Makinen, and H. Liimatainen, “Modelling car fleet renewal in finland: A model and development speed-based scenarios,” Transportation Research Procedia, vol. 112, Oct. 2021. [Online]. Available: http://doi.org/10.1016/j.tranpol.2021.08.012

R. Vidal, C. Duk, A. Guevara, and E. Rubinstein, “Análisis del estado del arte y experiencias de gestión de demanda de transporte urbano en américa latina y el caribe,” Banco Interamericano de Desarrollo, Tech. Rep. IDB-TN-2003, Oct. 2020. [Online]. Available: https://tinyurl.com/4p5phwua

M. Luo, Z. Ma, W. Zhao, M. Enoch, and S.-J. Chien, “An ex-post evaluation of the public acceptance of a license plate-based restriction policy: A case study of xi’an, china,” Transportation Research Part A: Policy and Practice, vol. 155, 2022. [Online]. Available: http://doi.org/10.1016/j.tra.2021.10.024

R. Viri, J. Mäkinen, and H. Liimatainen, “Modelling car fleet renewal in finland: A model and development speed-based scenarios,” Transportation Policy, vol. 112, 2021. [Online]. Available: http://doi.org/10.1016/j.tranpol.2021.08.012

M. Adnan, F. Outay, S. Ahmed, E. Brattich, S. Di-Sabatino, and D. Janssens, “Integrated agent-based microsimulation framework for examining impacts of mobility-oriented policies,” Personal and Ubiquitous Computing, vol. 25, no. 1, 2021. [Online]. Available: http://doi.org/10.1007/s00779-020-01363-w

L. Fridstrøm, V. Østli, and K. Johansen, “A stock-flow cohort model of the national car fleet,” European Transport Research Review, vol. 8, no. 22, 2016. [Online]. Available: http://doi.org/10.1007/s12544-016-0210-z

H. Kim, M. Ross, and G. Keoleian, “Optimal fleet conversion policy from a life cycle perspective,” Transportation Research Part D: Transport and Environment, vol. 9, no. 3, May. 2004. [Online]. Available: http://doi.org/10.1016/j.trd.2004.02.004

N. Gilbert and R. Conte, Emergence in social simulation. London: UCL Press, 1995, pp. 144–156. [Online]. Available: http://www.complexcity.info/files/2011/08/gilbert-emergence.pdf

L. Gulyás and G. Kampis, “Models, representations and comparisons in computer simulations,” Procedia Computer Science, vol. 66, 2015. [Online]. Available: http://doi.org/10.1016/j.procs.2015.11.003

C. M. Macal and M. J. North, “Agent-based modeling and simulation: abms examples,” in 2008 Winter Simulation Conference, Miami, FL, USA, 2008, pp. 101–112. [Online]. Available: http://doi.org/10.1109/WSC.2008.4736060

U. Wilensky and W. Rand, An introduction to agent-based modeling. MIT Press, 2015.

A. Crooks, Agent-based Models and Geographical Information Systems, 1st ed. SAGE Publications Ltd, 2019. [Online]. Available: http://doi.org/10.4135/9781529793543

A. Borshchev and A. Filippov, “From system dynamics and discrete even to practical agent based modeling,” in 22nd International Conference on System Dynamics and Society, 2004. [Online]. Available: https://proceedings.systemdynamics.org/2004/SDS_2004/PAPERS/381BORSH.pdf

V. Grimm, S. F. Railsback, E. Vincenot, U. Berger, and C. Gallagher, “The odd protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism,” Journal of Artificial Societies and Social Simulation, vol. 23, no. 2, 2020. [Online]. Available: http://doi.org/10.18564/jasss.4259

R. S. Ortiz-LLiguizaca, “Determinación del índice kvr (kilómetros vehículos recorrido) para el cantón cañar,” Undergraduate thesis, Universidad del Azuay, Cuenca, Ecuador, 2018. [Online]. Available: https://dspace.uazuay.edu.ec/bitstream/datos/8275/1/13998.pdf

D. Sarango and P. Moncayo, “Determinación del indicador kilómetros-vehículo recorrido (kvr) para la ciudad de cuenca,” Undergraduate thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2016. [Online]. Available: https://dspace.ups.edu.ec/handle/123456789/12152

U. Wilensky, “Netlogo: Center for connected learning comp.-based modeling,” Northwestern University, Evanston, IL, 1999.

Downloads

Published

2025-04-30

How to Cite

Zapata-Celis, J. A., Ceballos, Y. F., & Castillo-Grisales, J. A. (2025). Simulation model for vehicle fleet growth to review public policies for transport demand management. Revista Facultad De Ingeniería Universidad De Antioquia, (116), 90–99. https://doi.org/10.17533/udea.redin.20250472