Plantas utilizadas en la descontaminación de suelos en Colombia: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20250364

Palabras clave:

Colombia, fitorremediación, conservación del suelo, fauna silvestre

Resumen

El suelo es el hábitat de muchas especies de flora y fauna, además de ser utilizado para diversas actividades antropogénicas como son la extracción de combustibles fósiles, agricultura, minería entre otras, las cuales pueden llegar a contaminar el suelo. El uso de plantas para la descontaminación de suelos se ha utilizado como una estrategia de biorremediación, con el objetivo de retornar la zona contaminada a unas condiciones similares a las originales. En la siguiente revisión sistemática (RS) de literatura científica sin límite de tiempo, se describen las plantas utilizadas en suelos colombianos. Se usaron cuatro bases de datos: ScienceDirect, SpringerLink, Scopus y Scielo mediante trece rutas de búsqueda. Al evaluar diversos criterios de inclusión y exclusión, la búsqueda arrojó un total de siete artículos originales. En la RS se encontró que los contaminantes más estudiados en la fitorremediación de suelos colombianos son los metales pesados e hidrocarburos y se concluye que la implementación de plantas en los suelos permite obtener una disminución considerable en la contaminación.

 

|Resumen
= 76 veces | PDF (ENGLISH)
= 32 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luisa María Múnera-Porras, Universidad de Antioquia

Profesor del Grupo de Investigación en Salud y Sostenibilidad, Escuela de Microbiología

María Fernanda Sarmiento-Gamero, Universidad de Antioquia

Grupo de Investigación Salud y Sostenibilidad. Escuela de Microbiología

María Verónica Orozco-Martínez, Universidad de Antioquia

Grupo de Investigación Salud y Sostenibilidad. Escuela de Microbiología

Citas

S. Silva and F. Correa, “Análisis de la contaminación del suelo: Revisión de la normativa y posibilidades de regulación económica.,” Semest. Económico, vol. 12, no. 23, pp. 13–34, 2009, [Online]. Available: http://www.scielo.org.co/pdf/seec/v12n23/v12n23a2.

M. Eugenia, G. Useda, and V. P. Acevedo, “Contaminación Del Suelo En La Zona Minera De Rasgatá Bajo (Tausa). Modelo Conceptual Conceptual Model of Soil Pollution in the Mining Zone of Rasgatá Baja (Tausa),” Cienc. e Ing. Neogranadina, vol. 26, no. 1, pp. 57–74, 2016, [Online]. Available: http://dx.doi.org/10.18359/.

N. Rodriguez Eugenio, M. McLaughlin, and D. Pennock, La contaminación del suelo: una realidad oculta. 2019.

D. K. Patra, C. Pradhan, and H. K. Patra, “Toxic metal decontamination by phytoremediation approach: Concept, challenges, opportunities and future perspectives,” Environ. Technol. Innov., vol. 18, p. 100672, 2020, doi: 10.1016/j.eti.2020.100672.

V. Shah and A. Daverey, “Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil,” Environ. Technol. Innov., vol. 18, p. 100774, 2020, doi: 10.1016/j.eti.2020.100774.

Food and Agriculture Organization of the United Nations, “Report sounds alarm on soil pollution,” 2018, 2018. https://www.fao.org/news/story/en/item/1126971/icode/ (accessed Jan. 12, 2013).

P. Bhanse, M. Kumar, L. Singh, M. K. Awasthi, and A. Qureshi, “Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects,” Chemosphere, vol. 303, no. P1, p. 134954, 2022, doi: 10.1016/j.chemosphere.2022.134954.

V. A. Arias Espana, A. R. Rodriguez Pinilla, P. Bardos, and R. Naidu, “Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites,” Sci. Total Environ., vol. 618, pp. 199–209, 2018, doi: 10.1016/j.scitotenv.2017.10.245.

S. Marrugo-Madrid, M. Turull, G. E. Montes, M. V. Pico, J. L. Marrugo-Negrete, and S. Díez, “Phytoremediation of mercury in soils impacted by gold mining: A case-study of Colombia,” Bioremediation Environ. Sustain. Toxicity, Mech. Contam. Degrad. Detoxif. Challenges, pp. 145–160, 2020, doi: 10.1016/B978-0-12-820524-2.00007-9.

Y. Palacios-Torres, K. Caballero-Gallardo, and J. Olivero-Verbel, “Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia,” Chemosphere, vol. 193, pp. 421–430, 2018, doi: 10.1016/j.chemosphere.2017.10.160.

J. A. Velásquez Arias, “Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación,” Rev. Investig. Agrar. y Ambient., vol. 8, no. 1, pp. 151–167, 2017, doi: 10.22490/21456453.1846.

U.S. Environmental Protection Agency, “A Citizen’s Guide to Phytoremediation What Is Phytoremediation?,” pp. 1–2, 2012, [Online]. Available: https://permanent.fdlp.gov/gpo70460/a_citizens_guide_to_phytoremediation.pdf.

L. P. T. Benítez, L. M. Miranda, and C. A. C. Castro, “Phytoremediation to Remove Pollutants from Water, Leachates and Soils,” Chem. Eng. Trans., vol. 92, no. April, pp. 553–558, 2022, doi: 10.3303/CET2292093.

C. S. Rocha, D. C. Rocha, L. Y. Kochi, D. N. M. Carneiro, M. V. dos Reis, and M. P. Gomes, “Phytoremediation by ornamental plants: a beautiful and ecological alternative,” Environ. Sci. Pollut. Res., vol. 29, no. 3, pp. 3336–3354, 2022, doi: 10.1007/s11356-021-17307-7.

S. López-Martínez, M. E. Gallegos-Martínez, L. Perez Flores, and M. Gutierrez Rojas, “Mecanismos de fitorremediación de suelos contaminados con moléculas orgánicas xenobióticas,” Rev. Int. Contam. Ambient, 2005, doi: 10.1007/s11356-018-2495-z.

K. L. Njoku and S. O. Nwani, “Phytoremediation of heavy metals contaminated soil samples obtained from mechanic workshop and dumpsite using Amaranthus spinosus,” Sci. African, vol. 17, p. e01278, 2022, doi: 10.1016/j.sciaf.2022.e01278.

N. Merkl, R. Schultze-Kraft, and C. Infante, “Phytoremediation in the tropics-the effect of crude oil on the growth of tropical plants,” Bioremediat. J., vol. 8, no. 3–4, pp. 177–184, 2004, doi: 10.1080/10889860490887527.

R. A. Bento et al., “Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil,” Water. Air. Soil Pollut., vol. 223, no. 9, pp. 5659–5671, 2012, doi: 10.1007/s11270-012-1305-3.

P. Villamil and D. Ph, “Procesamiento y análisis de datos en el derrame de hidrocarburos en Colombia,” 2015.

M. A. Oyuela Leguizamo, W. D. Fernández Gómez, and M. C. G. Sarmiento, “Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands — A review,” Chemosphere, vol. 168, pp. 1230–1247, 2017, doi: 10.1016/j.chemosphere.2016.10.075.

J. J. Gao et al., “Phytoremediation and phytosensing of chemical contaminant, toluene: Identification of the required target genes,” Mol. Biol. Rep., vol. 39, no. 8, pp. 8159–8167, 2012, doi: 10.1007/s11033-012-1663-3.

G. Urrútia and X. Bonfill, “Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis,” Medicina Clínica, vol. 135, no. 11. pp. 507–511, 2010, doi: 10.1016/j.medcli.2010.01.015.

E. V. Durante-Yánez, M. A. Martínez-Macea, G. Enamorado-Montes, E. C. Caballero, and J. Marrugo-Negrete, “Phytoremediation of Soils Contaminated with Heavy Metals from Gold Mining Activities Using Clidemia sericea D. Don,” Plants, vol. 11, no. 5, pp. 1–19, 2022, doi: 10.3390/plants11050597.

J. Marrugo-Negrete, S. Marrugo-Madrid, J. Pinedo-Hernández, J. Durango-Hernández, and S. Díez, “Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site,” Sci. Total Environ., vol. 542, pp. 809–816, 2016, doi: 10.1016/j.scitotenv.2015.10.117.

D. Ramirez and J. Dussan, “Landfarmed oil sludge as a carbon source for Canavalia ensiformis during phytoremediation,” Int. J. Environ. Sci. Technol., vol. 11, no. 5, pp. 1197–1206, 2014, doi: 10.1007/s13762-014-0575-2.

D. F. Rojas-Tapias, R. R. Bonilla, and J. Dussán, “Effect of inoculation with plant growth-promoting bacteria on growth and copper uptake by sunflowers,” Water. Air. Soil Pollut., vol. 223, no. 2, pp. 643–654, 2012, doi: 10.1007/s11270-011-0889-3.

M. S. Sánchez, R. D. Torrenegra, H. Martínez, C. E. Salazar, and R. Barahona, “Producción de biomasa y absorción de metales pesados por cuatro plantas crecidas en el basurero Morovia, Medellín, Colombia,” Acta Biol. Colomb., vol. 15, no. 2, pp. 271–288, 2010.

C. Turgut, M. Katie Pepe, and T. J. Cutright, “The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils,” Chemosphere, vol. 58, no. 8, pp. 1087–1095, 2005, doi: 10.1016/j.chemosphere.2004.09.073.

Z. Martínez, M. S. González, J. Paternina, and M. Cantero, “Contaminación de suelos agrícolas por metales pesados, zona minera El Alacrán, Colombia,” Temas Agrar., vol. 22, no. 2, pp. 21–31, 2017, doi: 10.21897/rta.v22i2.941.

Asociación colombiana de Mineria, “Minería en cifras,” vol. 4, no. 1, pp. 88–100, 2022.

A. Guzmán, P. Vásquez, and R. Carmenate, “Fitotecnología para la recuperación de agroecosistemas contaminados con metales pesados por desechos industriales Phytotechnology for the recovery of agroecosystems contaminated with metals heavy for industrial waste,” vol. 48, no. 3, pp. 43–52, 2021.

Y. Cruz et al., “Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd2+) and mercury (Hg2+),” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-90826-y.

A. Ahmed, A. . Sara Taha, R. Q. and Sundas, and W. Man-Qun, “Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications,” Toxics, vol. 9, p. 42, 2021.

F. Vergara-Murillo, S. González-Ospino, N. Cepeda-Ortega, F. Pomares-Herrera, and B. Johnson-Restrepo, “Adverse Health Effects and Mercury Exposure in a Colombian Artisanal and Small-Scale Gold Mining Community,” Toxics, vol. 10, no. 12, 2022, doi: 10.3390/toxics10120723.

S. Adipah, “Introduction of Petroleum Hydrocarbons Contaminants and its Human Effects,” J. Environ. Sci. Public Heal., vol. 03, no. 01, pp. 1–9, 2018, doi: 10.26502/jesph.96120043.

E. Ochoa, “Campo de girasoles, el nuevo atractivo turístico en los Montes de María,” 2021. https://www.radionacional.co/cultura/turismo/campo-de-girasoles-el-nuevo-atractivo-turistico-en-los-montes-de-maria (accessed Nov. 27, 2022).

Notired360, “‘Campos de girasoles’, la nueva ruta agroturística en Colombia,” 2021. https://notired360.com/2021/08/09/campos-de-girasoles-colombia/ (accessed Nov. 27, 2022).

K. A. Alaboudi, B. Ahmed, and G. Brodie, “Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant,” Ann. Agric. Sci., vol. 63, no. 1, pp. 123–127, 2018, doi: 10.1016/j.aoas.2018.05.007.

J. K. Adesodun, M. O. Atayese, T. A. Agbaje, B. A. Osadiaye, O. F. Mafe, and A. A. Soretire, “Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates,” Water. Air. Soil Pollut., vol. 207, no. 1–4, pp. 195–201, 2010, doi: 10.1007/s11270-009-0128-3.

Z. Kong and B. R. Glick, The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation, 1st ed., vol. 71. Elsevier Ltd., 2017.

X. Cao et al., “Amendments and bioaugmentation enhanced phytoremediation and micro-ecology for PAHs and heavy metals co-contaminated soils,” J. Hazard. Mater., vol. 426, no. September 2021, p. 128096, 2022, doi: 10.1016/j.jhazmat.2021.128096.

M. Kopytko and D. M. Ibarra Mojica, “Evaluación del potencial de biodegradación de hidrocarburos totales de petróleo (TPH) en suelos contaminados procedentes de PETROSANTANDER (Colombia) INC.,” 2009, doi: 10.18566/puente.v3n1.a04.

J. P. C. Huachen, J. M. Contreras, J. D. L. Pfuño, L. Á. P. Aguilar, and P. P. G. Vílchez, “Phytoremediation of cadmium contaminated soils using sunflower (Helianthus annuus L. var. Sunbright),” Acta Agron., vol. 70, no. 2, pp. 163–170, 2021, doi: 10.15446/acag.v70n2.94208.

R. M. Cerrón, G. G. Sánchez, Y. M. Yachachi, F. P. Ramos, L. V. Gonzales, and R. C. Torres, “Absorción de plomo y cadmio por girasol de un suelo contaminado y remediado con enmiendas orgánicas en forma de compost y vermicompost,” Sci. Agropecu., vol. 11, no. 2, pp. 177–186, 2020, doi: 10.17268/SCI.AGROPECU.2020.02.04.

E. D. J. Cadavid-Velásquez, N. D. S. Pérez-Vásquez, and J. Marrugo-Negrete, “Contaminación por metales pesados en la bahía Cispatá en Córdoba-Colombia y su bioacumulación en macromicetos,” Gestión y Ambient., vol. 22, no. 1, pp. 43–53, 2019, doi: 10.15446/ga.v22n1.76380.

J. Marrugo-Negrete, J. Durango-Hernández, J. Pinedo-Hernández, J. Olivero-Verbel, and S. Díez, “Phytoremediation of mercury-contaminated soils by Jatropha curcas,” Chemosphere, vol. 127, pp. 58–63, 2015, doi: 10.1016/j.chemosphere.2014.12.073.

J. Marrugo-Negrete, G. Enamorado-Montes, J. Durango-Hernández, J. Pinedo-Hernández, and S. Díez, “Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands,” Chemosphere, vol. 167, pp. 188–192, 2017, doi: 10.1016/j.chemosphere.2016.09.130.

L. T. Castro and L. D. C. Molina, “Determination of the degree of accumulation of heavy metals in macrophytes from the Bogota River in Colombia,” Chem. Eng. Trans., vol. 74, no. October 2018, pp. 259–264, 2019, doi: 10.3303/CET1974044.

A. Arias Hoyos, A. Ramirez, V. A. Fernandez, and N. E. Sanchez, “Lenteja de agua (Lemna minor) para el tratamiento de las aguas residuales que provienen del lavado de la fibra de fique (Furcraea bedinghausii),” Ing. y Compet., vol. 18, no. 2, p. 25, 2016, doi: 10.25100/iyc.v18i2.2151.

E. M. Jiménez-Bambague, C. A. Madera-Parra, A. C. Ortiz-Escobar, P. A. Morales-Acosta, E. J. Peña-Salamanca, and F. Machuca-Martínez, “High-rate algal pond for removal of pharmaceutical compounds from urban domestic wastewater under tropical conditions. Case study: Santiago de Cali, Colombia,” Water Sci. Technol., vol. 82, no. 6, pp. 1031–1043, 2020, doi: 10.2166/wst.2020.362.

Descargas

Publicado

2025-03-14

Cómo citar

Múnera-Porras, L. M., Sarmiento-Gamero, M. F., & Orozco-Martínez, M. V. (2025). Plantas utilizadas en la descontaminación de suelos en Colombia: una revisión sistemática . Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250364

Número

Sección

Artículo de revisión o estado del arte