Cribado virtual basado en estructuras de inhibidores dirigidos a la tiamina fosfato sintasa en streptococcus pneumoniae

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20250986

Palabras clave:

Resistrencia de patogenos, T¨iamina fosfato sintasa, Bindarit, Modelamiento de proteinas, Acoplamiento molecular

Resumen

La resistencia antimicrobiana de Streptococcus pneumoniae representa un desafío creciente para la salud pública global. Aunque esta bacteria ha sido ampliamente estudiada, la enzima tiamina fosfato sintasa, esencial en su metabolismo, aún no cuenta con una estructura tridimensional resuelta experimentalmente. Este estudio tuvo como objetivo identificar compuestos con potencial inhibitorio frente a ThiL utilizando herramientas de predicción estructural y acoplamiento molecular. Se predijo la estructura tridimensional mediante AlphaFold2 y se ajustó su sitio activo en base a estructuras homólogas. Posteriormente, se realizó un cribado virtual de compuestos bioactivos provenientes de las bases de datos Zinc20 y PubChem, y se evaluó su afinidad de unión mediante AutoDock Vina. Los resultados destacaron a Bindarit como un posible inhibidor, mostrando una energía de unión mayor (-9.78 kcal/mol)que la de los ligandos naturales. Este hallazgo sugiere su potencial como terapia antimicrobiana dirigida. Se recomienda validar experimentalmente estos resultados mediante estudios in vitro e in vivo.

|Resumen
= 39 veces | PDF (ENGLISH)
= 10 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Guido Michaell Sánchez-Rojas, Universidad Nacional Pedro Ruíz Gallo

B.Sc. in Biology (Biological Sciences)

Antero Enrique Yacarini-Martínez, Universidad San Martín de Porres

Doctor en Ciencias Biolóicas. Docente (Facultad de Medicina Humana), Universidad de San Martín de Porres

Docente a Tiempo Completo (Ciencias de la Salud, Universidad Católica Santo Toribio de Mogrovejo

Erick Giancarlo Suclupe-Farro, Universidad San Martín de Porres

Maestría en Ciencias. Profesor, Escuela de Medicina, Universidad Católica Santo Toribio de Mogrovejo

Profesor, Ciencias Biológicas, Universidad Nacional Pedro Ruíz Gallo

Citas

References

Antimicrobial Resistance Collaborators, "Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis," Lancet (London, England), vol. 399, no. 10325, pp. 629–655, 2022. [Online]. Available: https://doi.org/10.1016/S0140-6736(21)02724-0

S. Guan, K. Zhu, Y. Dong, H. Li, S. Yang, S. Wang, and Y. Shan, "Exploration of Binding Mechanism of a Potential Streptococcus pneumoniae Neuraminidase Inhibitor from Herbaceous Plants by Molecular Simulation," International Journal of Molecular Sciences, vol. 21, no. 3, p. 1003, 2020.

Organización Mundial de la Salud, "Datos recientes revelan los altos niveles de resistencia a los antibióticos en todo el mundo," 29 de enero de 2018. [Online]. Available: https://www.who.int/es/news/item/29-01-2018-high-levels-of-antibiotic-resistance-found-worldwide-new-data-shows

C. T. Walsh and T. A. Wencewicz, "Prospects for new antibiotics: a molecule-centered perspective," The Journal of Antibiotics, vol. 67, no. 1, pp. 7-22, 2014. [Online]. Available: https://doi.org/10.1038/ja.2013.49

J. M. Munita and C. A. Arias, "Mechanisms of Antibiotic Resistance," Microbiol Spectrum, vol. 4, no. 2, pp. 485-511, 2016. [Online]. Available: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

D. L. Nelson and M. M. Cox, Principios de bioquímica Lehninger, 7a ed., C. M. Cuchillo Foix, trans., Ediciones Omega, S.A., 2018.

R. Utili, "Le infezioni da germi gram-positivi resistenti ai trattamenti antibiotici" [Gram-positive bacterial infections resistant to antibiotic treatment], Annali italiani di medicina interna : organo ufficiale della Societa italiana di medicina interna, vol. 16, no. 4, pp. 205–219, 2001. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/11799629

J. Aceil y F. Y. Avci, "Pneumococcal Surface Proteins as Virulence Factors, Immunogens, and Conserved Vaccine Targets," Frontiers in cellular and infection microbiology, vol. 12, p. 832254, 2022. [Online]. Available: https://doi.org/10.3389/fcimb.2022.832254

A. M. Correa, M. A. Onieva-García, I. López, y N. Montiel, "Enfermedad neumocócica invasiva en el Hospital Costa del Sol: emergencia de serotipos no vacunables" [Invasive neumococcal disease in Costa del Sol Hospital: replacement by non-vaccinable serotypes], Revista española de salud publica, vol. 92, 2018. [Online]. Available: https://www.sanidad.gob.es/biblioPublic/publicaciones/recursos_propios/resp/revista_cdrom/VOL92/ORIGINALES/RS92C_201806034.pdf

N. Sosa Delgado, D. Martinez Rojas, y J. Lugo, "Serotipos vacunales y no vacunales de Streptococcus pneumoniae en niños de Latinoamérica: revisión del último reporte SIREVA II," CES Medicina, vol. 34, no. 3, pp. 179–187, 2020. [Online]. Available: https://doi.org/10.21615/cesmedicina.34.3.1

Organización Mundial de la Salud, "Neumonía," 11 de noviembre de 2021. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/pneumonia

G. D. Vásquez Ludeña, "Análisis y situación de salud: Situación epidemiológica de las neumonías bacterianas en el Perú, 2018 – 2022," Boletín Epidemiológico, vol. 31, no. SE 35, pp. 1551–1555, 2022. [Online]. Available: https://www.dge.gob.pe/epipublic/uploads/boletin/boletin_202235_02_115216.pdf

A. L. Barra, L. G. Morão, R. F. Gutierrez, I. Polikarpov, C. Wrenger, A. S. Nascimento, and L. Dantas, "Essential Metabolic Routes as a Way to ESKAPE From Antibiotic Resistance," Frontiers in public health, vol. 8, no. 26, 2020. [Online]. Available: https://doi.org/10.3389/fpubh.2020.00026

Q. Du, H. Wang, and J. Xie, "Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets?" International Journal of Biological Sciences, vol. 7, no. 1, pp. 41–52, 2011. [Online]. Available: https://doi.org/10.7150/ijbs.7.41

S. Singh, B. K. Malik, and D. K. Sharma, "Metabolic pathway analysis of S. pneumoniae: an in silico approach towards drug-design," Journal of bioinformatics and computational biology, vol. 5, no. 1, pp. 135–153, 2007. [Online]. Available: https://doi.org/10.1142/s0219720007002564

T. P. Begley, D. M. Downs, S. E. Ealick, F. W. McLafferty, A. P. Van Loon, S. Taylor, N. Campobasso, H. J. Chiu, C. Kinsland, J. J. Reddick, and J. Xi, "Thiamin biosynthesis in prokaryotes," Archives of Microbiology, vol. 171, no. 5, pp. 293–300, 1999. [Online]. Available: https://doi.org/10.1007/s002030050713

H. J. Chiu, J. J. Reddick, T. P. Begley, and S. E. Ealick, "Crystal structure of thiamin phosphate synthase from Bacillus subtilis at 1.25 A resolution," Biochemistry, vol. 38, no. 20, pp. 6460–6470, 1999. [Online]. Available: https://doi.org/10.1021/bi982903z

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. [Online]. Available: https://doi.org/10.1016/S0022-2836(05)80360-2

J. Jumper et al., "Highly accurate protein structure prediction with AlphaFold," Nature, vol. 596, pp. 583–589, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03819-2

A. Dilip, S. Lešnik, T. Štular, D. Janežič, and J. Konc, "Ligand-based virtual screening interface between PyMOL and LiSiCA," Journal of Cheminformatics, vol. 8, no. 46, 2016. [Online]. Available: https://doi.org/10.1186/s13321-016-0157-z

S. Lešnik, T. Štular, B. Brus, D. Knez, S. Gobec, D. Janežič, and J. Konc, "LiSiCA: A Software for Ligand-Based Virtual Screening and Its Application for the Discovery of Butyrylcholinesterase Inhibitors," Journal of Chemical Information and Modeling, vol. 55, no. 8, pp. 1521–1528, 2015. [Online]. Available: https://doi.org/10.1021/acs.jcim.5b00136

J. Eberhardt, D. Santos-Martins, A. F. Tillack, and S. Forli, "AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings," Journal of Chemical Information and Modeling, vol. 61, no. 8, pp. 3891–3898, 2021. [Online]. Available: https://doi.org/10.1021/acs.jcim.1c0020

F. Stanzione, I. Giangreco, and J. C. Cole, "Use of molecular docking computational tools in drug discovery," Progress in Medicinal Chemistry, vol. 60, pp. 273–343, 2021. [Online]. Available: https://doi.org/10.1016/bs.pmch.2021.01.004

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorat, "Docking and scoring in virtual screening for drug discovery: methods and applications," Nature Reviews Drug Discovery, vol. 3, no. 11, pp. 935–949, 2004. [Online]. Available: https://doi.org/10.1038/nrd1549

F. D. Prieto-Martínez, M. Arciniega, and J. L. Medina-Franco, "Acoplamiento Molecular: Avances Recientes y Retos," TIP revista especializada en ciencias químico-biológicas, vol. 21, Supl. 1, pp. 65-87, 2018. [Online]. Available: https://doi.org/10.22201/fesz.23958723e.2018.0.143

I. Lanchero Barrios and F. López Vallejo, "Estudio in silico e in vitro de compuestos inhibidores de la enzima lipasa pancreática: una contribución al reposicionamiento de fármacos antiobesidad," Tesis de Maestria en Ciencias, Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Química, 2016. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/59555?show=full

J. J. Irwin, K. G. Tang, J. Young, C. Dandarchuluun, B. R. Wong, M. Khurelbaatar, Y. S. Moroz, J. Mayfield, and R. A. Sayle, "ZINC20—A free ultralarge-scale chemical database for ligand discovery," Journal of Chemical Information and Modeling, vol. 60, no. 12, pp. 6065–6073, 2020. [Online]. Available: https://doi.org/10.1021/acs.jcim.0c00675

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E. Bolton, "PubChem 2023 update," Nucleic Acids Research, vol. 51, no. D1, pp. D1373-D1380, 2023. [Online]. Available: https://doi.org/10.1093/nar/gkac956

V. Eskandari, "Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein," Journal of Molecular Modeling, vol. 18, no. 153, 2022. [Online]. Available: https://doi.org/10.1007/s00894-022-05138-3

G. Li, F. Z. Hu, X. Yang, Y. Cui, J. Yang, F. Qu, G. F. Gao, and J.-R. Zhang, "Complete genome sequence of Streptococcus pneumoniae strain ST556, a multidrug-resistant isolate from an otitis media patient," Journal of Bacteriology, vol. 194, no. 12, pp. 3294-3295, 2012. [Online]. Available: https://doi.org/10.1128/jb.00363-12

Schrödinger, LLC, "The PyMOL Molecular Graphics System (version 2.5.5)," [Software]. [Online]. Available: https://pymol.org/2/

E. Krieger, K. Joo, J. Lee, J. Lee, S. Raman, J. Thompson, M. Tyka, D. Baker, and K. Karplus, "Improving physical realism, stereochemistry, and side-Cadena accuracy in homology modeling: Four approaches that performed well in CASP8," Proteins, vol. 77 Suppl 9, Suppl. 9, pp. 114–122, 2009. [Online]. Available: https://doi.org/10.1002/prot.2257

J. Graef, C. Ehrt, and M. Rarey, "Binding site detection remastered: Enabling fast, robust, and reliable binding site detection and descriptor calculation with DoGSite3," Journal of Chemical Information and Modeling, vol. 63, no. 10, pp. 3128-3137, 2023. [Online]. Available: https://doi.org/10.1021/acs.jcim.3c00336

A. Volkamer, A. Griewel, T. Grombacher, and M. Rarey, "Analyzing the topology of active sites: On the prediction of pockets and subpockets," Journal of Chemical Information and Modeling, vol. 50, no. 11, pp. 2041-2052, 2010. [Online]. Available: https://doi.org/10.1021/ci100241y

A. Volkamer, D. Kuhn, T. Grombacher, F. Rippmann, and M. Rarey, "Combining global and local measures for structure-based druggability predictions," J. Chem. Inf. Model., vol. 52, no. 2, pp. 360-372, 2012. [Online]. Available: https://doi.org/10.1021/ci200454v

N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, "Open Babel: An open chemical toolbox," J. Cheminf., vol. 3, no. 33, 2011. [Online]. Available: https://doi.org/10.1186/1758-2946-3-33

M. F. Sanner, "Python: a programming language for software integration and development," J. Mol. Graphics Modell., vol. 17, no. 1, pp. 57-61, 1999.

S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J. Olson, "Computational protein–ligand docking and virtual drug screening with the AutoDock suite," Nat. Protoc., vol. 11, no. 5, pp. 905–919, 2016. [Online]. Available: https://doi.org/10.1038/nprot.2016.051

O. Trott and A. J. Olson, "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading," J. Comput. Chem., vol. 31, no. 2, pp. 455-461, 2010. [Online]. Available: https://doi.org/10.1002/jcc.2133

M. F. Adasme, K. L. Linnemann, S. N. Bolz, F. Kaiser, S. Salentin, V. J. Haupt, and M. Schroeder, "PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA," Nucleic Acids Res., vol. 49, no. W1, pp. W530–W534, 2021. [Online]. Available: https://doi.org/10.1093/nar/gkab294

R. K. Wierenga, "The TIM-barrel fold: a versatile framework for efficient enzymes," FEBS Lett., vol. 492, no. 3, pp. 193–198, 2001. [Online]. Available: https://doi.org/10.1016/s0014-5793(01)02236-0

E. Iwasawa et al., "The anti-inflammatory agent bindarit attenuates the impairment of neural development through suppression of microglial activation in a neonatal hydrocephalus mouse model," J. Neurosci., vol. 42, no. 9, pp. 1820-1844, 2022. [Online]. Available: https://doi.org/10.1523/jneurosci.1160-21.2021

S. Oddi et al., "The anti-inflammatory agent bindarit acts as a modulator of fatty acid-binding protein 4 in human monocytic cells," Sci. Rep., vol. 9, no. 1, 2019. [Online]. Available: https://doi.org/10.1038/s41598-019-51691-y

C. H. Serezani et al., "Cyclic AMP: Master regulator of innate immune cell function," Am. J. Respir. Cell Mol. Biol., vol. 39, no. 2, pp. 127-132, 2008. [Online]. Available: https://doi.org/10.1165/rcmb.2008-0091tr

A. Stirban et al., "Benfotiamine counteracts smoking-induced vascular dysfunction in healthy smokers," Int. J. Vasc. Med., vol. 2012, pp. 1-7, 2012. [Online]. Available: https://doi.org/10.1155/2012/968761

K. R. Rai et al., "Fludarabine compared with chlorambucil as primary therapy for chronic Lymphocytic leukemia," New England J. Med., vol. 343, no. 24, pp. 1750-1757, 2000. [Online]. Available: https://doi.org/10.1056/nejm200012143432402

B. Schmitt et al., "Fludarabine combination therapy for the treatment of chronic Lymphocytic leukemia," Clin. Lymphoma, vol. 3, no. 1, pp. 26-35, 2002. [Online]. Available: https://doi.org/10.3816/clm.2002.n.008

B. Faubert et al., "The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator," Cancer Lett., vol. 356, no. 2, pp. 165-170, 2015. [Online]. Available: https://doi.org/10.1016/j.canlet.2014.01.018

F. Marín-Aguilar et al., "Adenosine monophosphate (AMP)-activated protein kinase: A new target for nutraceutical compounds," Int. J. Mol. Sci., vol. 18, no. 2, p. 288, 2017. [Online]. Available: https://doi.org/10.3390/ijms18020288

C. R. Garrett et al., "Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of AKT phosphorylation, in adult subjects with solid tumors containing activated AKT," Investing. New Drugs, vol. 29, no. 6, pp. 1381-1389, 2011. [Online]. Available: https://doi.org/10.1007/s10637-010-9479-2

Descargas

Publicado

2025-09-19

Cómo citar

Sánchez-Rojas, G. M., Yacarini-Martínez, A. E., & Suclupe-Farro, E. G. (2025). Cribado virtual basado en estructuras de inhibidores dirigidos a la tiamina fosfato sintasa en streptococcus pneumoniae. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250986

Número

Sección

Artículo de investigación