Modelado computacional de datos epidemiológicos usando procesos de Poisson no homogéneos y datos funcionales

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20250367

Palabras clave:

Función de Intensidad, Modelo Lineal Generalizado, Trayectorias Estocásticas, Estimación de Profundidad, Envolventes de Confianza

Resumen

En este trabajo, presentamos una nueva metodología para modelar variables de conteo discretas dentro del marco de procesos estocásticos. Nuestro enfoque integra dos áreas estadísticas: los procesos de Poisson no homogéneos para la estimación y predicción de funciones de intensidad basadas en variables explicativas y las técnicas de estimación de datos funcionales. A través de un estudio de caso integral centrado en una enfermedad infecciosa de características virales, demostramos el potencial de nuestra metodología. Proporcionamos evidencia empírica de que nuestra metodología ofrece una alternativa robusta para modelar variables de conteo. Nuestros hallazgos apoyan la utilidad de nuestro enfoque para capturar la dinámica compleja inherente a los datos de conteo en los fenómenos epidemiológicos de enfermedades infecciosas.

|Resumen
= 218 veces | PDF (ENGLISH)
= 98 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Santiago Ortiz, Universidad de San Buenaventura

Profesor, Facultad de Ingeniería

Juan Esteban Chavarría, Universidad EAFIT

 

Student, Escuela de Ingeniería y Ciencias Aplicadas

Henry Velasco, Universidad EAFIT

PhD Student, Escuela de Ingeniería y ciencias aplicadas

Citas

J. M. Ver Hoef and P. L. Boveng, “Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data?” Ecology, vol. 88, no. 11, pp. 2766–2772, 2007. [Online]. Available: https://doi.org/10.1890/07-0043.1

P. McCullagh and J. A. Nelder, Generalized Linear Models. Springer US, 1989.

S. L. Zeger and B. Qaqish, “A regression model for time series of counts,” Biometrika, vol. 75, no. 4, pp. 621–629, 1988. [Online]. Available: https://doi.org/10.1093/biomet/75.4.621

M. P. Quine and E. Seneta, “Bortkiewicz’s data and the law of small numbers,” International Statistical Review / Revue Internationale de Statistique, vol. 55, no. 2, p. 173, 1987. [Online]. Available: https://www.jstor.org/stable/1403193

A. M. Schmidt and J. B. M. Pereira, “Modelling time series of counts in epidemiology,” International Statistical Review, vol. 79, no. 1, p. 48–69, Apr 2011. [Online]. Available: https://doi.org/10.1111/j.1751-5823.2010.00123.x

S. Lundbye-Christensen, C. Dethlefsen, A. Gorst-Rasmussen, T. Fischer, H. C. Schønheyder, K. J. Rothman, and H. T. Sørensen, “Examining secular trends and seasonality in count data using dynamic generalized linear modelling: a new methodological approach illustrated with hospital discharge data on myocardial infarction,” European Journal of Epidemiology, vol. 24, no. 5, p. 225–230, May 2009. [Online]. Available: https://doi.org/10.1007/s10654-009-9325-z

S. Coxe, S. G. West, and L. S. Aiken, “The analysis of count data: A gentle introduction to poisson regression and its alternatives,” Journal of Personality Assessment, vol. 91, no. 2, pp. 121–136, 2009. [Online]. Available: https://doi.org/10.1080/00223890802634175

A. C. Cameron and P. K. Trivedi, Regression analysis of count data, ser. Econometric society monographs. Cambridge University Press, 1998.

J. S. Long, Regression models for categorical and limited dependent variables, ser. Advanced quantitative techniques in the social sciences. Thousand Oaks: Sage Publications, 1997.

D. Lambert, “Zero-inflated poisson regression, with an application to defects in manufacturing,” Technometrics, vol. 34, no. 1, pp. 1–14, 1992. [Online]. Available: https://doi.org/10.1080/00401706.1992.10485228

D. B. Hall, “Zero-inflated poisson and binomial regression with random effects: A case study,” Biometrics, vol. 56, no. 4, p. 1030–1039, Dec 2000.

C. Weiß, An Introduction to Discrete Valued Time Series, 1st ed. Wiley, Jan 2018.

A. A. Alzaid and M. Al-osh, “An integer-valued pth–order autoregressive structure (inar(p)) process,” Journal of Applied Probability, vol. 27, no. 2, p. 314–324, Jun 1990.

T. H. Rydberg and N. Shephard, “Bin models for trade-by-trade data. modelling the number of trades in a fixed interval of time,” Econometric Society World Congress 2000 Contributed Papers, Aug 2000.

A. Heinen, “Modelling time series count data: An autoregressive conditional poisson model,” SSRN Electronic Journal, 2003.

K. Fokianos, A. Rahbek, and D. Tjøstheim, “Poisson autoregression,” Journal of the American Statistical Association, vol. 104, no. 488, p. 1430–1439, Dec 2009.

C. L. Britt, M. Rocque, and G. M. Zimmerman, “The analysis of bounded count data in criminology,” Journal of Quantitative Criminology, vol. 34, no. 2, p. 591–607, Jun 2018. [Online]. Available: https://doi.org/10.1007/s10940-017-9346-9

S. Coles, An introduction to statistical modeling of extreme values, ser. Springer Series in Statistics. London: Springer-Verlag, 2001, ch. 7, A Point Process Characterization of Extremes.

J. M. Hilbe, Chapter 1: Varieties of Count Data. Cambridge University Press, 2014.

J. A. Nelder and R. W. M. Wedderburn, “Generalized linear models,” Journal of the Royal Statistical Society. Series A (General), vol. 135, no. 3, pp. 370–384, 1972. [Online]. Available: https://doi.org/10.2307/2344614

M. Hayat and M. Higgins, “Understanding poisson regression,” Journal of Nursing Education, vol. 53, no. 4, pp. 207–215, 2014. [Online]. Available: https://doi.org/10.3928/01484834-20140325-04

M. K. Hutchinson and M. C. Holtman, “Analysis of count data using poisson regression,” Research in Nursing & Health, vol. 28, no. 5, pp. 408–418, 2005. [Online]. Available: https://doi.org/10.1002/nur.20093

P. Consul and F. Famoye, “Generalized poisson regression model,” Communications in Statistics - Theory and Methods, vol. 21, no. 1, pp. 89–109, 1992. [Online]. Available: https://doi.org/10.1080/03610929208830766

S. E. Rigdon and A. P. Basu, Statistical methods for the reliability of repairable systems, ser. Wiley series in probability and statistics. Wiley, 2000.

S. Lee, J. R. Wilson, and M. M. Crawford, “Modeling and simulation of a nonhomogeneous poisson process having cyclic behavior,” Communications in Statistics - Simulation and Computation, vol. 20, no. 2-3, pp. 777–809, 1991. [Online]. Available: https://doi.org/10.1080/03610919108812984

E. P. Kao and S.-L. Chang, “Modeling time-dependent arrivals to service systems: A case in using a piecewise-polynomial rate function in a nonhomogeneous poisson process,” Management Science, vol. 34, no. 11, p. 1367–1379, 1988. [Online]. Available: https://doi.org/10.1287/mnsc.34.11.1367

A. Law and W. Kelton, Simulation Modelling and Analysis, ser. McGraw-Hill series in industrial engineering and management science. McGraw Hill, 1991.

P. A. W. Lewis and G. S. Shedler, “Statistical analysis of non-stationary series of events in a data base system,” IBM Journal of Research and Development, vol. 20, no. 5, pp. 465–482, 1976. [Online]. Available: https://doi.org/10.1147/rd.205.0465

A. Cebrian, J. Abaurrea, and J. Asin, “Nhpoisson: An r package for fitting and validating nonhomogeneous poisson processes,” Journal of statistical software, vol. 64, 03 2015. [Online]. Available: https://doi.org/10.18637/jss.v064.i06

L. M. Leemis, “Nonparametric estimation of the cumulative intensity function for a nonhomogeneous poisson process,” Management Science, vol. 37, pp. 886–900, 1991. [Online]. Available: https://doi.org/10.1287/mnsc.37.7.886

D. R. Cox and P. Lewis, The Statistical Analysis of Series of Events [by] D.R. Cox and P.A.W. Lewis, ser. Methuen’s monographs on applied probability and statistics. Methuen, 1966.

P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation. New York, NY: Springer New York, 1987, ch. 5, Nonuniform Random Numbers.

R. Pasupathy, Generating Homogeneous Poisson Processes, 1st ed. Wiley, Jan. 2011.

E. Cinlar, Introduction to stochastic processes. Prentice-Hall, 1975, ch. 4, Poisson Processes.

P. A. W. Lewis and G. S. Shedler, “Simulation of nonhomogeneous poisson processes by thinning,” Naval Research Logistics Quarterly, vol. 26, no. 3, p. 403–413, Sep. 1979.

D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, 2nd ed. New York: Springer, 2003.

A. C. Cebrian, NHPoisson: Modelling and Validation of Non Homogeneous Poisson Processes, 2020, r package version 3.3. [Online]. Available: https://CRAN.R-project.org/package=NHPoisson

M. Gaston, T. León, and F. Mallor, “Functional data analysis for non homogeneous poisson processes,” presented at 2008 winter conference, Miami, FL, USA, 2008. [Online]. Available: https://doi.org/10.1109/WSC.2008.4736086

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

J. O. Ramsay and B. W. Silverman, Functional data analysis, 2nd ed., ser. Springer series in statistics. New York: Springer, 2005.

J. O. Ramsay, G. Hooker, and S. Graves, Functional data analysis with R and MATLAB, ser. Use R! Dordrecht; New York: Springer, 2009.

S. López-Pintado and J. Romo, “On the concept of depth for functional data,” Journal of the American Statistical Association, vol. 104, no. 486, p. 718–734, Jun 2009. [Online]. Available: https://doi.org/10.1198/jasa.2009.0108

Y. Sun and M. G. Genton, “Functional boxplots,” Journal of Computational and Graphical Statistics, vol. 20, no. 2, p. 316–334, Jan 2011. [Online]. Available: https://doi.org/10.1198/jcgs.2011.09224

D. Peña, Análisis de Series Temporales. Alianza Editorial, Oct. 2010.

A. Cuevas, M. Febrero, and R. Fraiman, “On the use of the bootstrap for estimating functions with functional data,” Computational Statistics & Data Analysis, vol. 51, no. 2, pp. 1063–1074, November 2006. [Online]. Available: https://doi.org/10.1016/j.csda.2005.10.012

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2022). [Online]. Available: http://www.ideam.gov.co/

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2024.

T. Liboschik, R. Fried, K. Fokianos, and P. Probst, tscount: Analysis of Count Time Series, 2020, r package version 1.4.3. [Online]. Available: https://CRAN.R-project.org/package=tscount

Descargas

Publicado

2025-03-17

Cómo citar

Ortiz, S., Chavarría, J. E., & Velasco, H. (2025). Modelado computacional de datos epidemiológicos usando procesos de Poisson no homogéneos y datos funcionales. Revista Facultad De Ingeniería Universidad De Antioquia, (118), e50367. https://doi.org/10.17533/udea.redin.20250367

Número

Sección

Artículo de investigación