Metallographic characterization of overdenture bars manufactured by overcasting abutments for dental implants
DOI:
https://doi.org/10.17533/udea.rfo.11549Keywords:
Dental implants, Overdentures, Metallography, SegregationAbstract
Introduction: the difficulty in handling conventional dentures in fully edentulous patients may be improved by using anchorage systems on dental implants for overdentures. The goal of this study was to conduct a metallographic characterization of a system of bars for overdentures by overcasting a metal base alloy on prefabricated titanium alloy abutments. Methods: using a design of overdenture bars, made with an addition of prefabricated titanium (Ti-6Al-4V) and a metal base alloy (Ni65-Cr22%,5%-Mo9,5%), a metallographic characterization of the overcasting process was performed by analyzing its influence on the microstructure of two commercial dental alloys: Ti-6Al-4V and Ni65%-Cr22,5%-Mo9,5% (Wiron 99) using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), light microscopy analysis (LM), and stereomicroscopy (EM). Results: the findings suggest that during overcasting a chemical bonding occurs due to the presence of oxygen between these two alloys, showing heterogeneous dendritic structures along the samples due to thickness irregularities on the bars and to precipitations of their molybdenum borders. Conclusions: from a metallographic perspective, the chemical bonding of the two alloys (Ni65-Cr22%, 5%-Mo9, 5% and Ti-6Al-4V) after overcasting suggests that overcasting between these two alloys is a viable option for placing structures on implant abutments.
Downloads
References
Mericske-Stern RD, Taylor TD, Belser U. Management of the edentulous patient. Clin Oral Implants Res 2000; 11(1): 108-125.
Batenburg RH, Meijer HJ, Raghoebar GM, Vissink A. Treatment concept for mandibular overdentures supported by endosseous implants: a literature review. Int J Oral Maxillofac Implants 1998; 13(4): 539-545.
Sadowsky SJ. Treatment considerations for maxillary implant overdentures: a systematic review. J Prosthet Dent 2007; 97(6): 340-348.
Fueki K, Kimoto K, Ogawa T, Garrett NR. Effect of implant-supported or retained dentures on masticatory performance: a systematic review. J Prosthet Dent 2007; 98(6): 470-477.
Trakas T, Michalakis K, Kang K, Hirayama H. Attachment systems for implant retained overdentures: a literature review. Implant Dent 2006; 15(1): 24-34.
Moeller MS, Duff RE, Razzoog ME. Rehabilitation of malpositioned implants with a CAD/CAM milled implant overdenture: a clinical report. J Prosthet Dent 2011; 105(3): 143-146.
Slot W, Raghoebar GM, Vissink A, Huddleston Slater JJ, Meijer HJ. A systematic review of implant-supported maxillary overdentures after a mean observation period of at least 1 year. J Clin Periodontol 2010; 37(1): 98-110.
Waddell JN, Payne AG, Swain MV, Kieser JA. Scanning electron microscopy observations of failures of implant overdenture bars: a case series report. Clin Implant Dent Relat Res 2010; 12(1): 26-38.
Lothigius E, Smedberg JI, De Buck V, Nilner K. A new design for a hybrid prosthesis supported by osseointegrated implants: 1. Technical aspects. Int J Oral Maxillofac Implants 1991; 6(1): 80-86.
Naert I, Gizani S, van Steenberghe D. Rigidly splinted implants in the resorbed maxilla to retain a hinging overdenture: a series of clinical reports for up to 4 years. J Prosthet Dent 1998; 79(2): 156-164.
Zitzmann NU, Marinello CP. Implant-supported removable overdentures in the edentulous maxilla: clinical and technical aspects. Int J Prosthodont 1999; 12(5): 385-390.
Kramer A, Weber H, Benzing U. Implant and prosthetic treatment of the edentulous maxilla using a bar-supported prosthesis. Int J Oral Maxillofac Implants 1992; 7(2): 251-255.
Spyropoulou PE, Razzoog ME, Duff RE, Chronaios D, Saglik B, Tarrazzi DE. Maxillary implant-supported bar overdenture and mandibular implant-retained fixed denture using CAD/CAM technology and 3-D design software: a clinical report. J Prosthet Dent 2011 ;105(6): 356-362.
Visser A, Raghoebar GM, Meijer HJ, Vissink A. Implant-retained maxillary overdentures on milled bar suprastructures: a 10-year follow-up of surgical and prosthetic care and aftercare. Int J Prosthodont 2009; 22(2): 181-192.
De Torres EM, Rodrigues RC, de Mattos Mda G, Ribeiro RF. The effect of commercially pure titanium and alternative dental alloys on the marginal fit of one-piece cast implant frameworks. J Dent 2007; 35(10): 800-805.
Kelly JR, Rose TC. Nonprecious alloys for use in fixed prosthodontics: a literature review. J Prosthet Dent 1983; 49(3): 363-370.
Setcos JC, Babaei-Mahani A, Silvio LD, Mjor IA, Wilson NH. The safety of nickel containing dental alloys. Dent Mater 2006; 22(12): 1163-1168.
Wataha JC, Lockwood PE, Nelson SK, Bouillaguet S. Long-term cytotoxicity of dental casting alloys. Int J Prosthodont 1999; 12(3): 242-248.
Manaranche C, Hornberger H. A proposal for the classification of dental alloys according to their resistance to corrosion. Dent Mater 2007; 23(11): 1428-1437.
Al-Hiyasat AS, Bashabsheh OM, Darmani H. Elements released from dental casting alloys and their cytotoxic effects. Int J Prosthodont 2002; 15(5): 473-478.
Viswanathan S. Electrochemical behavior of Co-Cr and Ni-Cr dental cast alloys. Trans Nonferrous Met Soc China 2009; 19: 785-790.
Kan JY, Rungcharassaeng K, Bohsali K, Goodacre CJ, Lang BR. Clinical methods for evaluating implant framework fit. J Prosthet Dent 1999; 81(1): 7-13.
Sahin S, Cehreli MC. The significance of passive framework fit in implant prosthodontics: current status. Implant Dent 2001; 10(2): 85-92.
Leyens C, Peters M. Titanium and Titanium alloys fundamentals and applications. Weinheim: Wiley VCH; 2003. p. 4-50.
Gil FJ, Ginebra MP, Manero JM, Planell JA. Formation of a-Widmanstatten structure: effects of grain size and cooling rate on the Widmanstatten morphologies and on the mechanical properties in Ti-6Al-4V alloy 2001. J Alloy Comp 2001; 329 (1-2): 142-152.
Hong Q, Qi YL, Zhao YQ. Effect of rolling process on microstructure and properties of Ti600 alloy plates. Rare Metal Mat Eng 2005; 34(8): 1334-1337
Faot F, Jose da Silva W, Matheus RC, Del Bel Cury AA. Microstructural characterization of Ni-Cr-Mo-Ti and Ti-6Al-4V alloys used in prosthetic abutments. Rev Odonto Cienc [revista en línea] 2009 [fecha de acceso 4 de agosto de 2009]; 24(4): 401-405 URL disponible en http://www.revistaseletronicas.pucrs.br/ojs/index/php/index
ASM International, Handbook Committee, Vander Voort GF. Metallographic and Microstuctures. 10.a ed. California: ASM International 2004; 9: 458-476.
Goodall TG, Lewis AJ. The metallography of heat treatment effects in a nickel-base casting alloy. A preliminary report. Aust Dent J 1979; 24(4): 235-237.
Banovic SW, DuPont JN, Marder AR. Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steels and Ni base alloys. Sci Technol Weld Join 2002; 7(5): 374-83.
Roach MD, W. J. Use of X-ray photoelectron spectroscopy and cyclic polarization to evaluate the corrosion behavior of six nickel–chromium alloys before and after porcelain-fused-to-metal firing. J Prosthet Dent 2000; 84(6): 623-634.
Johnson T. Surface analysis of porcelain fused to metal systems. Dent Mater 2006, 22(4): 330-37.
Silva J, Sousa L, Nakasato RZ, Codaro HM. Electrochemical and Microstructural study of Ni-Cr-No alloys used in dental prostheses. Mater Sci Appl 2011; 2: 42-48.
Perricone MJ, Dupont JN. Effect of Composition on the Solidification Behavior of Several Ni-Cr-Mo and Fe-Ni-Cr-Mo Alloys. Metall Mater Trans A 2006; 37(4): 1267-1280.
Bauer J, Costa JF, Carvalho CN, Grande RH, Loguercio AD, Reis A. Characterization of two Ni-Cr dental alloys and the influence of casting mode on mechanical properties. J Prosthodont Res 2012; 1016: 1-8.
Roach MD, Wolan JT, Parsell DE, Bumgarder JD. Use of X-ray photoelectron spectroscopy and cyclic polarization to evaluate the corrosion behavior of six nickel-chromium alloys before and after porcelain-fused-to-metal firing. J Prosthet Dent 2000; 84(6): 623-634.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2014 Revista Facultad de Odontología Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
Copyright comprises moral and patrimonial rights.
1. Moral rights: are born at the moment of the creation of the work, without the need to register it. They belong to the author in a personal and unrelinquishable manner; also, they are imprescriptible, unalienable and non negotiable. Moral rights are the right to paternity of the work, the right to integrity of the work, the right to maintain the work unedited or to publish it under a pseudonym or anonymously, the right to modify the work, the right to repent and, the right to be mentioned, in accordance with the definitions established in article 40 of Intellectual property bylaws of the Universidad (RECTORAL RESOLUTION 21231 of 2005).
2. Patrimonial rights: they consist of the capacity of financially dispose and benefit from the work trough any mean. Also, the patrimonial rights are relinquishable, attachable, prescriptive, temporary and transmissible, and they are caused with the publication or divulgation of the work. To the effect of publication of articles in the journal Revista de la Facultad de Odontología, it is understood that Universidad de Antioquia is the owner of the patrimonial rights of the contents of the publication.
The content of the publications is the exclusive responsibility of the authors. Neither the printing press, nor the editors, nor the Editorial Board will be responsible for the use of the information contained in the articles.
I, we, the author(s), and through me (us), the Entity for which I, am (are) working, hereby transfer in a total and definitive manner and without any limitation, to the Revista Facultad de Odontología Universidad de Antioquia, the patrimonial rights corresponding to the article presented for physical and digital publication. I also declare that neither this article, nor part of it has been published in another journal.
Open Access Policy
The articles published in our Journal are fully open access, as we consider that providing the public with free access to research contributes to a greater global exchange of knowledge.
Creative Commons License
The Journal offers its content to third parties without any kind of economic compensation or embargo on the articles. Articles are published under the terms of a Creative Commons license, known as Attribution – NonCommercial – Share Alike (BY-NC-SA), which permits use, distribution and reproduction in any medium, provided that the original work is properly cited and that the new productions are licensed under the same conditions.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.