Comparison of debonding resistance and failure type of three orthodontic band cements

  • Liliana Andrea Piedra-Sarmiento Universidad Militar Nueva Granada
  • María Claudia Ariza-Salas Universidad Militar Nueva Granada
  • Humberto José Guzmán-Báez Universidad Nacional de Colombia
  • Fernando Zárate-Cadena Fundacion Universitaria UniCIEO
Keywords: Dental cement, Orthodontic bands, Debonding


Introduction: the objective of this study was to compare the debonding resistance and failure type observed in three materials used for band cementation by means of the universal testing machine and a stereomicroscope. Methods: 72 third lower molars were collected from patients who needed extractions; metal bands were cemented on them with a pre-soldered tube and internal etching (Bracket USED, OrthoUSA, USA). The samples were randomly sorted out in three groups, forming a control group (zinc phosphate) and two pilot groups (resin-modified glass ionomer and polyacidmodified composite resin). All samples were subjected to a process of 2000 thermal cycles, and later to a debonding resistance test in the universal testing machine (Instron 3367 class 0.5, with 0-30 Kn load cell, USA) at a speed of 2 mm/min. The data were calculated in megapascals, taking into account the surface area of bands (mm2). Finally, to determine failure type, a visual inspection was conducted using a stereomicroscope (Stemi 2000C, Carl Zeiss, Göttingen, Germany AXIOCAM Carl Zeiss Microimaging, Göttingen, Germany). Results: no statistically significant differences were found among the three study groups in terms of debonding resistance (p value = 0.119). The most predominant failure type in the three cements occurred at the cemento-enamel interphase, with 61.1%, showing a statistically significant difference. Conclusion: zinc phosphate, resin-modified glass ionomer and polyacid-modified composite resin showed similar debonding resistance values and the most predominant failure type in the three band cementing
materials occurred at the cemento-enamel interface; however, the resin-modified glass ionomer showed a lower percentage.

= 151 veces | PDF (ESPAÑOL (ESPAÑA))
= 103 veces|


Download data is not yet available.

Author Biographies

Liliana Andrea Piedra-Sarmiento, Universidad Militar Nueva Granada
DMD, School of Dentistry, Institución Universitaria Colegios de Colombia. Colegio Odontológico. Graduate intern in Orthodontics, Universidad Militar Nueva Granada, Fundación CIEO, Bogotá, Colombia
María Claudia Ariza-Salas, Universidad Militar Nueva Granada
DMD, School of Dentistry of Fundación Universitaria San Martín. Graduate intern in Orthodontics, Universidad Militar Nueva Granada, Fundación CIEO, Bogotá, Colombia 
Humberto José Guzmán-Báez, Universidad Nacional de Colombia
DMD, School of Dentistry, Universidad Nacional de Colombia. MSc in Biomaterials and Oral Rehabilitation: Indiana University, Indianapolis, United States. Honorary Professor at Universidad Nacional de Colombia 
Fernando Zárate-Cadena, Fundacion Universitaria UniCIEO
DMD, School of Dentistry, Colegio Odontológico Colombiano. Orthodontist and Professor at CIEO-UNICIEO, Bogotá, Colombia. Specialist in University Teaching, Universidad Militar Nueva Granada. Bogotá, Colombia 


Hodges SJ, Gilthorpe MS, Hunt NP. The effect of micro-etching on the retention of orthodontic molar bands: a clinical trial. Eur J Orthod 2001; 23(1): 91-97.

Clark JR, Ireland AJ, Sherriff M. An in vivo and ex vivo study to evaluate the use of a glass polyphosphonate cement in orthodontic banding. Eur J Orthod 2003; 25(3): 319-323.

Millett D, Mandall N, Hickman J, Mattick R. Glenny AM. Adhesives for fixed orthodontic bands. A systematic review. Angle Orthod 2009; 79(1): 193-199.

Toledano M, Osorio R, Osorio E, Aguilera FS, Romeo A, de la Higuera B et al. Sorption and solubility testing of orthodontic bonding cements in different solutions. J Biomed Mater Res B Appl Biomater 2006; 76(2): 251-256.

Van de Sande FH, Silva AF, Michelon D, Piva E, Cenci MS, Demarco FF. Surface roughness of orthodontic band cements with different compositions. J Appl Oral Sci 2011; 19(3): 223-227.

Aguiar DA, Ritter DE, Rocha R, Locks A, Borgatto AF. Evaluación de las propiedades mecánicas de cinco cementos para cementación de bandas ortodónticas. Braz Oral Res 2013; 27(2): 136-141.

Williams PH, Sherriff M, Ireland AJ. An investigation into the use of two polyacid-modified composite resins (compomers) and a resin-modified glass poly (alkenoate) cement used to retain orthodontic bands. Eur J Orthod 2005; 27(3): 245-251.

Knox J, Chye KY, Durning P. An ex-vivo evaluation of resin-modified glass polyalkenoates and polyacid-modified composite resins as orthodontic band cements. J Orthod 2004; 31(4): 323-328.

Millett DT, Cummings A, Letters S, Roger E, Love J. Resin-modified glass ionomer, modified composite or conventional glass ionomer for band cementation?—an in vitro evaluation. Eur J Orthod 2003; 25(6): 609-614.

Sfondrini MF, Cacciafesta V, Noga E, Scribante A, Klersy C. In vitro bond strength evaluation of four orthodontic cements. J Adhes Dent 2010; 12(2): 131-135.

Caglaroglu M, Sukurica Y, HG Gurel, Keklik H. A comparison of shear bond strengths of six orthodontic cements. J Orthod 2014; 2(1): 17-20.

Guzmán HJ. Biomateriales odontológicos de uso clínico 5 ed. Bogotá: ECOE Ediciones; 2013. p. 51, 92-95.

Millett DT, Doubleday B, Alatsaris M, Love J, Wood D, Luther F, Devine D. Chlorhexidine-modified glass ionomer for band cementation? An in vitro study. J Orthod 2005; 32(1): 36-42.

Lacouture L, Mendoza J, Rivera R. Efectos del ciclaje térmico en la fuerza y tipo de falla adhesiva en esmalte humano. [Tesis de Posgrado [Bogotá]: Universidad Militar Nueva Granada – Fundación Centro de Investigación y Estudios Odontológicos CIEO; 2012. p.22.

How to Cite
Piedra-Sarmiento L. A., Ariza-Salas M. C., Guzmán-Báez H. J., & Zárate-Cadena F. (2016). Comparison of debonding resistance and failure type of three orthodontic band cements. Revista Facultad De Odontología Universidad De Antioquia, 28(1), 95-111.