Current status of materials for posterior indirect adhesive restorations

Authors

DOI:

https://doi.org/10.17533/udea.rfo.v37n2e354646

Keywords:

dental materials, ceramics, composite resins, permanent dental restoration

Abstract

The current materials for manufacturing posterior indirect adhesive restorations (PIAR) can be divided into ceramics, resin composite materials, and hybrid materials. Each one presents different composition, mechanical and optical properties, manufacturing techniques, and survival rates. The aim of this article was to review relevant materials and techniques currently available for manufacturing PIAR. A review of literature for randomized clinical trials, systematic reviews and literature reviews related to PIAR was performed using MEDLINE, PubMed, and Scielo. It is concluded that these materials show high durability and a good clinical performance. Furthermore, the survival rates of these restorations are over 90% for dental ceramics and over 85% for resin composites in the first couple of years with a minimum decrease over time. Thus, PIAR are a conservative and predictable option for restorations of posterior teeth and the choice of material used should always be weighed together with different factors including antagonist material, parafunctional habits, esthetics, and treatment cost.

|Abstract
= 105 veces | PDF
= 67 veces|

Downloads

Download data is not yet available.

Author Biographies

Janett Mas-López, Universidad Peruana Cayetano de Heredia

MSc in Dentistry, School of Dentistry, Cayetano Heredia Peruvian University

Diego Melendez, Universidad Peruana Cayetano Heredia

Specialist in Restorative and Esthetic Dentistry, School of Dentistry, Cayetano Heredia Peruvian University

Lidia Yileng Tay, Universidad Peruana Cayetano de Heredia

PhD in Dentistry, School of Dentistry, Cayetano Heredia Peruvian University

References

Prott LS, Pieralli S, Klein P, Spitznagel FA, Ibrahim F, Metzendorf MI, et al. Survival and complications of partial coverage restorations on posterior teeth-a systematic review and meta-analysis. J Esthet Restor Dent. 2025; 37: 620-41. DOI: https://doi.org/10.1111/jerd.13353

Bustamante-Hernández N, Montiel-Company JM, Bellot-Arcís C, Mañes-Ferrer JF, Solá-Ruíz MF, Agustín-Panadero R, et al. Clinical behavior of ceramic, hybrid and composite onlays: a systematic review and meta-analysis. Int J Environ Res Public Health. 2020; 17(20): 7582. DOI: https://doi.org/10.3390/ijerph17207582

Alani A, Mehta S, Koning I, Loomans B, Pereira-Cenci T. Restorative options for moderate and severe tooth wear: a systematic review. J Dent. 2025; 156: 105711. DOI: https://doi.org/10.1016/j.jdent.2025.105711

Morimoto S, Rebello de Sampaio FBW, Braga MM, Sesma N, Özcan M. Survival rate of resin and ceramic inlays, onlays, and overlays: a systematic review and meta-analysis. J Dent Res. 2016; 95(9): 985-94. DOI: https://doi.org/10.1177/0022034516652848

Deubener J, Allix M, Davis MJ, Duran A, Höche T, Honma T, et al. Updated definition of glass-ceramics. J Non-Cryst Solids. 2018; 501: 3–10. DOI: https://doi.org/10.1016/j.jnoncrysol.2018.01.033

Detellier C. Functional kaolinite. Chem Rec. 2018; 18: 868–77. DOI: https://doi.org/10.1002/tcr.201700072

Fu L, Engqvist H, Xia W. Glass-ceramics in dentistry: a review. Materials. 2020; 13(5): 1049. DOI: https://doi.org/10.3390/ma13051049

Warreth A, Elkareimi Y. All-ceramic restorations: a review of the literature. Saudi Dent J. 2020; 32(8): 365–72. DOI: https://doi.org/10.1016/j.sdentj.2020.05.004

Powers J, Wataha J. Dental ceramics: foundations and applications. In Powers J, Wataha (Eds). Dental Materials. St Louis: Elsevier; 2017. p. 192–213.

Saglam G, Cengiz S, Karacaer O. Marginal adaptation and fracture resistance of feldspathic and polymer-infiltrated ceramic network CAD/CAM endocrowns. Niger J Clin Pract. 2020; 23(1): 1–6. DOI: https://doi.org/10.4103/njcp.njcp_231_19

Chitsaz F, Ghodsi S, Harehdasht SA, Goodarzi B, Zeighami S. Evaluation of the colour and translucency parameter of conventional and Computer-aided design and computer-aided manufacturing (CAD-CAM) feldspathic porcelains after staining and laser-assisted bleaching. J Conserv Dent. 2021; 24(6): 628–33. DOI: https://doi.org/10.4103/jcd.jcd_273_21

Anusavice KJ. Dental ceramics. In Anusavice KJ, Rawls HR, Shen C (Eds). Phillips' Science of Dental Materials. St Louis: Elsevier; 2013. p. 418–73.

Denry IL, Mackert JR, Holloway JA, Rosenstiel SF. Effect of cubic leucite stabilization on the flexural strength of feldspathic dental porcelain. J Dent Res. 1996; 75(12): 1928–35. Doi: https://doi.org/10.1177/00220345960750120301

Fradeani M, Redemagni M. An 11-year clinical evaluation of leucite-reinforced glass-ceramic crowns. Quintessence Int. 2002; 33(7): 503–10.

Sharkey S. Metal-ceramic versus all-ceramic restorations: part 3. J Ir Dent Assoc. 2011; 57(2): 110–3.

Mörmann WH, Bindl A. All-ceramic, chair-side CAD/CAM restorations. Dent Clin North Am. 2002; 46(2): 405–26. DOI: https://doi.org/10.1016/S0011-8532(01)00007-6

Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM ceramic restorative materials for natural teeth. J Dent Res. 2018; 97(10): 1082–91. DOI: https://doi.org/10.1177/0022034518779759

Sasany R, Yilmaz B. Effect of stain brand and shade on color stability of CAD-CAM feldspathic ceramic. Odontology. 2022; 110: 452–9. DOI: https://doi.org/10.1007/s10266-021-00676-3

Zimmer S, Göhlich O, Rüttermann S, Lang H, Raab WHM, Barthel CR. Long-term survival of Cerec restorations: a 10-year study. Oper Dent. 2008; 33(5): 484–7. DOI: https://doi.org/10.2341/07-142

Willard A, Chu TMG. The science and application of IPS e.max dental ceramic. Kaohsiung J Med Sci. 2018; 34(4): 238–42. DOI: https://doi.org/10.1016/j.kjms.2018.01.012

Zarone F, Ferrari M, Mangano FG, Leone R, Sorrentino R. “Digitally Oriented Materials”: focus on lithium disilicate ceramics. Int J Dent. 2016. DOI: https://doi.org/10.1155/2016/9840594

Margvelashvili-Malament M, Thompson V, Malament KA. Minimally invasive fixed prosthodontics: a narrative review. J Esthet Restor Dent. 2025; 37(5): 1248-54. DOI: https://doi.org/10.1111/jerd.13422

Hallmann L, Ulmer P, Kern M. Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. J Mech Behav Biomed Mater. 2018; 82: 355-70. DOI: https://doi.org/10.1016/j.jmbbm.2018.02.032

Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016; 32(7): 908-14. DOI: https://doi.org/10.1016/j.dental.2016.03.013

Fotiadou C, Manhart J, Diegritz C, Folwaczny M, Hickel R, Frasheri I. Longevity of lithium disilicate indirect restorations in posterior teeth prepared by undergraduate students: a retrospective study up to 8.5 years. J Dent. 2021; 105: 103569. DOI: https://doi.org/10.1016/j.jdent.2020.103569

Manziuc M, Kui A, Chisnoiu A, Labuneț A, Negucioiu M, Ispas A, et al. Zirconia-reinforced lithium silicate ceramic in digital dentistry: a comprehensive literature review of our current understanding. Medicina. 2023; 59(12): 2135. DOI: https://doi.org/10.3390/medicina59122135

Al-Thobity AM, Alsalman A. Flexural properties of three lithium disilicate materials: an in vitro evaluation. Saudi Dent J. 2021; 33(7): 620-7. DOI: https://doi.org/10.1016/j.sdentj.2020.07.004

Sorrentino R, Ruggiero G, Di Mauro MI, Breschi L, Leuci S, Zarone F. Optical behaviors, surface treatment, adhesion, and clinical indications of zirconia-reinforced lithium silicate (ZLS): a narrative review. J Dent. 2021; 112: 103722. DOI: https://doi.org/10.1016/j.jdent.2021.103722

Zarone F, Ruggiero G, Leone R, Breschi L, Leuci S, Sorrentino R. Zirconia-reinforced lithium silicate (ZLS) mechanical and biological properties: a literature review. J Dent. 2021; 109: 103661. DOI: https://doi.org/10.1016/j.jdent.2021.103661

Banh W, Hughes J, Sia A, Chien DCH, Tadakamadla SK, Figueredo CM, et al. Longevity of polymer-infiltrated ceramic network and zirconia-reinforced lithium silicate restorations: a systematic review and meta-analysis. Materials. 2021; 14(17): 5058. DOI: https://doi.org/10.3390/ma14175058

Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: from veneered to monolithic. Part I. Quintessence Int. 2017; 48(5): 369-80. DOI: https://doi.org/10.3290/j.qi.a38057

Rekow ED, Silva NRFA, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res. 2011; 90(8): 937-52. DOI: https://doi.org/10.1177/0022034510391795

Bulut AC, Atsü SS. Occlusal thickness and cement-type effects on fracture resistance of implant-supported posterior monolithic zirconia crowns. Int J Oral Maxillofac Implants. 2021; 36(3): 485-91. DOI: https://doi.org/10.11607/jomi.8503

Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: a review. J Esthet Restor Dent. 2019; 31(5): 423-30. DOI: https://doi.org/10.1111/jerd.12492

Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res. 2018; 97(2): 140-7. DOI: https://doi.org/10.1177/0022034517737483

Nassary Zadeh P, Lümkemann N, Sener B, Eichberger M, Stawarczyk B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J Prosthet Dent. 2018; 120(6): 948-54. DOI: https://doi.org/10.1016/j.prosdent.2017.12.021

Gupta S, Abdulmajeed A, Donovan T, Boushell L, Bencharit S, Sulaiman TA. Monolithic zirconia partial coverage restorations: an in vitro mastication simulation study. J Prosthodont. 2021; 30(1): 76-82. DOI: https://doi.org/10.1111/jopr.13287

Wafaie RA, Ibrahim Ali A, Mahmoud SH. Fracture resistance of prepared premolars restored with bonded new lab composite and all-ceramic inlay/onlay restorations: laboratory study. J Esthet Restor Dent. 2018; 30(3): 229-39. DOI: https://doi.org/10.1111/jerd.12364

Fan J, Xu Y, Si L, Li X, Fu B, Hannig M. Long-term clinical performance of composite resin or ceramic inlays, onlays, and overlays: a systematic review and meta-analysis. Oper Dent. 2021; 46(1): 25-44. DOI: https://doi.org/10.2341/19-107-LIT

Alzraikat H, Burrow MF, Maghaireh GA, Taha NA. Nanofilled resin composite properties and clinical performance: a review. Oper Dent. 2018; 43(4): E173-90. DOI: https://doi.org/10.2341/17-208-T

James DF, Yarovesky U. An esthetic inlay technique for posterior teeth. Quintessence Int Dent Dig. 1983; 14(7): 725-31.

Magne P. Composite resins and bonded porcelain: the postamalgam era? J Calif Dent Assoc. 2006; 34(2): 135-47.

Ferracane JL. A historical perspective on dental composite restorative materials. J Funct Biomater. 2024; 15(7): 173. DOI: https://doi.org/10.3390/jfb15070173

Yadav R, Kumar M. Dental restorative composite materials: a review. J Oral Biosci. 2019; 61(2): 78-83. DOI: https://doi.org/10.1016/j.job.2019.04.001

Torres CRG, Zanatta RF, Huhtala MFRL, Borges AB. Semidirect posterior composite restorations with a flexible die technique: a case series. J Am Dent Assoc. 2017; 148(9): 671-6. DOI: https://doi.org/10.1016/j.adaj.2017.02.032

Spreafico RC, Krejci I, Dietschi D. Clinical performance and marginal adaptation of class II direct and semidirect composite restorations over 3.5 years in vivo. J Dent. 2005; 33(6): 499-507. DOI: https://doi.org/10.1016/j.jdent.2004.11.009

Angeletaki F, Gkogkos A, Papazoglou E, Kloukos D. Direct versus indirect inlay/onlay composite restorations in posterior teeth: a systematic review and meta-analysis. J Dent. 2016; 53: 12-21. DOI: https://doi.org/10.1016/j.jdent.2016.07.011

Nandini S. Indirect resin composites. J Conserv Dent. 2010; 13(4): 184-94. DOI: https://doi.org/10.4103/0972-0707.73377

Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res. 2016; 95(5): 487-95. https://doi.org/10.1177/0022034516634286

Soares CJ, Faria-E-Silva AL, Rodrigues MP, Vilela ABF, Pfeifer CS, Tantbirojn D, et al. Polymerization shrinkage stress of composite resins and resin cements: what do we need to know? Braz Oral Res. 2017; 31(suppl 1): e62. DOI: https://doi.org/10.1590/1807-3107BOR-2017.vol31.0062

Garoushi S, Sungur S, Boz Y, Ozkan P, Vallittu PK, Uctasli S, et al. Influence of short-fiber composite base on fracture behavior of direct and indirect restorations. Clin Oral Investig. 2021; 25(7): 4543-52. DOI: https://doi.org/10.1007/s00784-020-03768-6

Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, et al. Chairside CAD/CAM materials. part 1: measurement of elastic constants and microstructural characterization. Dent Mater. 2017; 33(1): 84-98. DOI: https://doi.org/10.1016/j.dental.2016.10.009

Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017; 33(1): 99-109. DOI: https://doi.org/10.1016/j.dental.2016.10.008

Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014; 33(5): 705-10. DOI: https://doi.org/10.4012/dmj.2014-208

Emsermann I, Eggmann F, Krastl G, Weiger R, Amato J. Influence of pretreatment methods on the adhesion of composite and polymer infiltrated ceramic CAD-CAM Blocks. J Adhes Dent. 2019; 21(5): 433-43. DOI: https://doi.org/10.3290/j.jad.a43179

Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013; 29(4): 419-26. DOI: https://doi.org/10.1016/j.dental.2013.01.002

Facenda JC, Borba M, Corazza PH. A literature review on the new polymer-infiltrated ceramic-network material (PICN). J Esthet Restor Dent. 2018; 30(4): 281-6. DOI: https://doi.org/10.1111/jerd.12370

Alomran WK, Nizami MZI, Xu HHK, Sun J. Evolution of dental resin adhesives: a comprehensive review. J Funct Biomater. 2025; 16(3): 104. DOI: https://doi.org/10.3390/jfb16030104

Ille CE, Jivănescu A, Pop D, Stoica ET, Flueras R, Talpoş-Niculescu IC, et al. Exploring the properties and indications of chairside CAD/CAM materials in restorative dentistry. J Funct Biomater. 2025; 16(2): 46. DOI: https://doi.org/10.3390/jfb16020046

Downloads

Published

2025-08-12

How to Cite

Mas-López, J., Melendez, D., & Tay, L. Y. (2025). Current status of materials for posterior indirect adhesive restorations. Revista Facultad De Odontología Universidad De Antioquia, 37(2), e354646. https://doi.org/10.17533/udea.rfo.v37n2e354646