Characterization of endodontically treated dentin

Authors

  • Lidis Marina Torres-Reyes Universidad Nacional de Colombia
  • Carolina Torres-Rodríguez Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.rfo.15070

Keywords:

Dentin, Sodium hypochlorite, EDTA, Tooth, Root canal treatment, Chlorhexidine

Abstract

Introduction: restoring endodontically treated teeth involves treating dentin with disinfectants and acidic substances that improve adhesion but generate structural irreversible changes. The objective of this article was to describe and analyze the changes in structure and mechanical properties produced by 5.25% sodium hypochlorite, 17% ethylenediaminetetraacetic acid (EDTA), and 2% chlorhexidine on endodontically treated dentin, as described in the literature. Methods: the following databases were consulted: Scient Direct, Pubmed, Scielo, and EbscoHost, using these keywords: “Human Dentin” and “Root Canal” and “Human Dentin and Change”, “Dentin Treated” and “Treated dentin and Chlorhexidine”. We selected 67 articles that met these criteria: thoroughly describe dentin changes when it is irrigated with 5.25% sodium hypochlorite and 17% ethylenediaminetetraacetic acid (EDTA), and 2% chlorhexidine at different treatment stages. Results and conclusions: we found out that treated dentin suffers changes in terms of dentinal architecture loss, ionic content and organic matrix, and reduction in microhardness, nanohardness, and compressive and tensile strength. Endodontically treated dentin is a chemically altered substrate with affected properties and poor adhesion durability.

|Abstract
= 555 veces | PDF (ESPAÑOL (ESPAÑA))
= 254 veces|

Downloads

Download data is not yet available.

Author Biographies

Lidis Marina Torres-Reyes, Universidad Nacional de Colombia

Candidate to the Master’s Degree in Dentistry, Universidad Nacional de Colombia, Bogotá, Colombia.

Carolina Torres-Rodríguez, Universidad Nacional de Colombia

Ph.D. Associate Professor, Department of Oral Health, School of Dentistry, Universidad Nacional de Colombia, Bogotá, Colombia

References

Faria A, Rodrigues R, de Almeida Antunes R, de Mattos MDA, Ribeiro R. Endodontically treated teeth: characteristics and considerations to restore them. J Prosthodont Res 2011; 55(2): 69-74.

Zhang K, Tay F, Kim Y, Mitchell J, Kim J, Carrilho M et al. The effect of initial irrigation with two different sodium hypochlorite concentrations on the erosion of instrumented radicular dentin. Dent Mater 2010; 26(6): 514-523.

Eldarrat A, High A, Kale G. In vitro analysis of ‘smear layer’ on human dentine using ac-impedance spectroscopy. J Dent 2004; 32(7): 547-554.

Teixeira C, Felippe M, Felippe W. The effect of application time of EDTA and NaOCl on intracanal smear layer removal: an SEM analysis. Int Endod J 2005; 38(5): 285-290.

De Vasconcelos B, Luna-Cruz S, De-Deus G, de MoraesI, Maniglia-Ferreira C, Gurgel-Filho E. Cleaning ability of chlorhexidine gel and sodium hypochlorite associated or not with EDTA as root canal irrigants: a scanning electron microscopy study. J Appl Oral Sci 2007; 15(5): 387-391.

Cecchin D, Farina A, Galafassi D, Barbizam J, Corona S, Carlini-Júnior B. Influence of sodium hypochlorite and edta on the microtensile bond strength of a self-etching adhesive system. J Appl Oral Sci 2010; 18(4): 385-389.

Jaju S, Jaju P. Newer root canal irrigants in horizon: a review. Int J Dent 2011; 2011 ID 51359: 1-9.

Estrela C, Estrela CRA, Barbin E, Spanó J, Marchesan M, Pécora J. Mechanism of action of sodium hypochlorite. Braz Dent J 2002; 13(2): 113-117.

Dotto S, Travassos R, de Oliveira E, Machado M, Martins J. Evaluation of ethylenediaminetetraacetic acid (EDTA) solution and gel for smear layer removal. Aust Endod J 2007; 33(2): 62-65.

Grawehr M, Sener B, Waltimo T, Zehnder M. Interactions of ethylenediamine tetraacetic acid with sodium hypochlorite in aqueous solutions. Int Endod J 2003; 36(6): 411-417.

Varlan C, Dimitriu B, Vârlan V, Bodnar D, Suciu I. Current opinions concerning the restoration of endodontically treated teeth: basic principles. J Med Life 2009; 2(2): 165-172.

Gao S, Cai S, Huang S, Qian L, Yu H. Nano-scratch behavior of human root canal Wall dentin lubricated with EDTA pastes. Tribol Int 2013; 63: 169-176.

Carrilho M, Carvalho R, Sousa E, Nicolau J, Breschi L, Mazzoni A et al. Substantivity of chlorhexidine to human dentin. Dent Mater 2010; 26(8): 779-785.

Rosenthal S, Spångberg L, Safavi K. Chlorhexidine substantivity in root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 98(4): 488-492.

Gomes B, Souza S, Ferraz C, Teixeira F, Zaia A, Valdrighi L et al. Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. Int Endod J 2003; 36(4): 267-275.

Gomes B, Vianna M, Zaia A, Almeida J, Souza-Filho F, Ferraz C. Chlorhexidine in endodontics. Braz Dent J 2013; 24(2): 89-102.

Komorowski R, Grad H, Wu X, Friedman S. Antimicrobial substantivity of chlorhexidine-treated bovine root dentin. J Endod 2000; 26(6): 315-317.

De Castro F, de Andrade M, Duarte Júnior S, Vaz L, Ahid F. Effect of 2% chlorhexidine on microtensile bond strength of composite to dentin. J Adhes Dent 2003; 5(2): 129-138.

Kim J, Uchiyama T, Carrilho M, Agee K, Mazzoni A, Breschi L et al. Chlorhexidine binding to mineralized versus demineralized dentin powder. Dent Mater 2010; 26(8): 771-778.

Basrani B, Santos J, Tjäderhane L, Grad H, Gorduysus O, Huang J et al. Substantive antimicrobial activity in chlorhexidine-treated human root dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 94(2): 240-245.

Haapasalo M, Shen Y, Qian W, Gao Y. Irrigation in endodontics. Dent Clin North Am 2010; 54(2): 291-312.

Ozturk B, Ozer F. Effect of NaOCl on bond strengths of bonding agents to pulp chamber lateral walls. J Endod 2004; 30(5): 362-365.

Santos J, Carrilho M, De Goes M, Zaia A, Gomes B, Souza-Filho F et al. Effect of chemical irrigants on the bond strength of a self-etching adhesive to pulp chamber dentin. J Endod 2006; 32(11): 1088-1090.

Campos EA, Correr GM, Leonardi DP, Barato-Filho F, Gonzaga CC, Zielak JC. Chlorhexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermo-mechanical stressing. J Dent 2009; 37(2): 108-114.

Parodi G. Factores restauradores que afectan la prognosis del tratamiento endodóntico: sugerencia de un protocolo de trabajo. Actas Odontol 2009; 6(1):12-26.

Pashley DH. Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med 1996; 7(2): 104-133.

Tjäderhane L, Carrilho M, Breshi L, Tay F, Pashley D. Dentin basic structure and composition - an overview. Endod Top 2012; 20(1): 3-29.

Perdigão J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater 2010; 26(2): e24-e37.

López MDC, Amaral RS. Proteolisis enzimática del colágeno dentinario. ConScientiae Saúde 2008; 7(4): 477-486.

Habelitz S, Balooch M, Marshall SJ, Balooch G, Marshall GW Jr. In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol. 2002; 138(3): 227-236.

Dorozhkin S. Calcium Orthophosphates. J Mater Sci 2007; 42: 1061-1095.

Fonseca RB, Haiter-Neto F, Carlo HL, Soares CJ, Sinhoreti MA, Puppin-Rontani RM et al. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch Oral Biol 2008; 53(11): 1023-1029.

Marshall GW Jr., Marshall SJ, Kinney JH, Balooch M. The dentin substrate: structure and properties related to bonding. J Dent 1997; 25(6): 441-458.

Fuentes V, Toledano M, Osorio R, Carvalho RM. Microhardness of superficial and deep sound human dentin. J Biomed Mater Res A 2003; 66(4): 850-853.

Chu CY, Kuo TC, Chang SF, Shyu YC, Lin CP. Comparison of the microstructure of crown and root dentin by a scanning electron microscopic study. J Dent Sci 2010; 5(1): 14-20.

Arola D, Ivancik J, Majd H, Fouad A, Bajaj D, Zhang X. Microstructure and mechanical behavior of radicular and coronal dentin. Endod Top 2012; 20(1): 30-51.

Jantarat J, Palamara JE, Lindner C, Messer HH. Time-dependent properties of human root dentin. Dent Mater 2002; 18(6): 486-493.

Giannini M, Soares CJ, de Carvalho RM. Ultimate tensile strength of tooth structures. Dent Mater 2004; 20(4): 322-329.

Inoue T, Saito M, Yamamoto M, Debari K, Kou K, Nishimura F et al. Comparison of nanohardness between coronal and radicular intertubular dentin. Dent Mater J 2009; 28(3): 295-300.

Kishen A, Ramamurty U, Asundi A. Experimental studies on the nature of property gradients in the human dentine. J Biomed Mater Res 2000; 51(4): 650-659.

Palamara JE, Wilson PR, Thomas CD, Messer HH. A new imaging technique for measuring the surface strains applied to dentine. J Dent. 2000; 28(2):141-146.

Kinney JH, Gladden JR, Marshall GW, Marshall SJ, So JH, Maynard JD. Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J Biomech 2004; 37(4): 437-441.

Ziskind D, Hasday M, Cohen SR, Wagner HD. Young’s modulus of peritubular and intertubular human dentin by nano-indentation tests. J Struct Biol 2011; 174(1): 23-30.

Luddin N, Ahmed HM. The antibacterial activity of sodium hypochlorite and chlorhexidine against Enterococcus faecalis: a review on agar diffusion and direct contact methods. J Conserv Dent 2013; 16(1): 9-16.

Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review. J Endod 2004; 30(5): 289-301.

Sim TP, Knowles JC, Ng YL, Shelton J, Gulabivala K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J 2001; 34(2): 120-132.

Grigoratos D, Knowles J, Ng YL, Gulabivala K. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J 2001; 34(2): 113-119.

Toledano M, Osorio R, Osorio E, Prati C, Carvalho RM. Microhardness of acid-treated and resin infiltrated human dentine. J Dent 2005; 33(4): 349-354.

Sayin TC, Serper A, Cehreli ZC, Otlu HG. The effect of EDTA, EGTA, EDTAC, and tetracycline-HCl with and without subsequent NaOCl treatment on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104(3): 418-424.

Pascon FM, Kantovitz KR, Sacramento PA, Nobre-dos-Santos M, Puppin-Rontani RM. Effect of sodium hypochlorite on dentine mechanical properties. A review. J Dent 2009; 37(12): 903-908.

Patil CR, Uppin V. Effect of endodontic irrigating solutions on the microhardness and roughness of root canal dentin: an in vitro study. Indian J Dent Res 2011; 22(1): 22-27.

Cheron RA, Marshall SJ, Goodis HE, Peters OA. Nanomechanical properties of endodontically treated teeth. J Endod 2011; 37(11): 1562-1565.

Oliveira LD, Carvalho CA, Nunes W, Valera MC, Camargo CH, Jorge AO. Effects of chlorhexidine and sodium hypochlorite on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104(4): e125-128.

Saghiri MA, Delvarani A, Mehrvarzfar P, Malganji G, Lotfi M, Dadresanfar B et al. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108(6): e29-e34.

Ari H, Erdemir A, Belli S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J Endod 2004; 30(11): 792-795.

Di Hipólito V, Rodrigues FP, Piveta FB, Azevedo LdaC, Alonso RCB, Silikas N et al. Effectiveness of self-adhesive luting cements in bonding to chlorhexidine-treated dentin. Dent Mater 2012; 28(5): 495-501.

Dalli M, Ercan E, Zorba YO, İnce B, Şahbaz C, Bahşi E et al. Effect of 1% chlorhexidine gel on the bonding strength to dentin. J Dental Sci. 2010; 5(1): 8-13.

Lindblad RM, Lassila LV, Salo V, Vallittu PK, Tjäderhane L. Effect of chlorhexidine on initial adhesion of fiber-reinforced post to root canal. J Dent 2010; 38(10): 796-801.

Beltz RE, Torabinejad M, Pouresmail M. Quantitative analysis of the solubilizing action of MTAD, sodium hypochlorite, and EDTA on bovine pulp and dentin. J Endod 2003; 29(5): 334-337.

Kandaswamy D, Venkateshbabu N. Root canal irrigants. J Conserv Dent 2010; 13(4): 256-264.

Zhang K, Kim YK, Cadenaro M, Bryan TE, Sidow SJ, Loushine RJ et al. Effects of different exposure times and concentrations of sodium hypochlorite/ ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod 2010; 36(1): 105-109.

Siqueira JF Jr, Rôças IN, Favieri A, Lima KC. Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endod 2000; 26(6): 331-334.

Vianna ME, Gomes BP, Berber VB, Zaia AA, Ferraz CC, de Souza-Filho FJ. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 97(1): 79-84.

Saleh AA, Ettman WM. Effect of endodontic irrigation solutions on microhardness of root canal dentine. J Dent 1999; 27(1): 43-46.

Mountouris G, Silikas N, Eliades G. Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin. J Adhes Dent 2004; 6(3): 175-182.

Hayashi M, Takahashi Y, Hirai M, Iwami Y, Imazato S, Ebisu S. Effect of endodontic irrigation on bonding of resin cement to radicular dentin. Eur J Oral Sci 2005; 113(1): 70-76.

Bertassoni LE, Marshall GW, Swain MV. Mechanical heterogeneity of dentin at different length scales as determined by AFM phase contrast. Micron 2012; 43(12): 1364-1371.

Published

2014-02-14

How to Cite

Torres-Reyes, L. M., & Torres-Rodríguez, C. (2014). Characterization of endodontically treated dentin. Revista Facultad De Odontología Universidad De Antioquia, 25(2), 372–388. https://doi.org/10.17533/udea.rfo.15070