Genes involved in amelogenesis imperfecta. Part II
DOI:
https://doi.org/10.17533/udea.rfo.v30n2a9Keywords:
Amelogenesis imperfecta, Tooth enamel, Tooth enamel proteins, Dental aesthetics, Genes, SyndromeAbstract
Amelogenesis imperfecta (AI) is a condition of genetic origin that alters the structure of tooth enamel. AI may exist in isolation or associated with other systemic conditions as part of a syndromic AI. Our goal is to describe in detail the genes involved in syndromic AI, the proteins encoded by these genes, and their functions according to current scientific evidence. An electronic literature search was carried out from the year 2000 to December 2017, pre-selecting 1,573 articles, 40 of which were analyzed and discussed. The results indicate that mutations in 12 genes are responsible for syndromic AI: DLX3, COL17A1, LAMA3, LAMB3, FAM20A, TP63, CNNM4, ROGDI, LTBP3, FAM20C, CLDN16, CLDN19. These genes participate in the coding of proteins involved in phosphorylation, ion exchange, and production and degradation of the constituent elements of the mineral and organic phase of tooth enamel. The scientific evidence confirms that AI can be part of the syndrome and requires special attention from the medical-dental community.
Downloads
References
Zheng L, Ehardt L, McAlpin B, About I, Kim D, Papagerakis S, et al. The tick tock of odontogenesis. Exp Cell Res. 2014 Jul 15; 325(2): 83–9. DOI: https://doi.org/10.1016/j.yexcr.2014.02.007
Prasad MK, Geoffroy V, Vicaire S, Jost B, Dumas M, Le Gras S, et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet. 2016
Feb; 53(2): 98–110. DOI: http://dx.doi.org.gate2.inist.fr/10.1136/jmedgenet-2015-103302
Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007 Apr 4; 2:17. DOI : https://doi.org/10.1186/1750-1172-2-17
Witkop CJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988 Nov; 17(9-10): 547–53. DOI: https://doi.org/10.1111/j.1600-0714.1988.
tb01332.x
Oliveira AFB, Chaves AMB, Rosenblatt A. The influence of enamel defects on the development of early childhood caries in a population with low socioeconomic status: a longitudinal study. Caries Res. 2006; 40(4): 296–302. DOI: https://doi-org.gate2.inist.fr/10.1159/000093188
Uribe S. Early childhood caries--risk factors. Evid Based Dent. 2009; 10(2): 37–8. DOI: https://doi-org. gate2.inist.fr/10.1038/sj.ebd.6400642
Zhang Z, Tian H, Lv P, Wang W, Jia Z, Wang S, et al. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis. PloS One. 2015; 10(3): e0121288. DOI :https://doi.org/10.1371/journal.pone.0121288
Nieminen P, Lukinmaa P-L, Alapulli H, Methuen M, Suojärvi T, Kivirikko S, et al. DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs. 2011; 194(1): 49–59. DOI: https://doi-org.gate2.inist.fr/10.1159/000322561
Kim Y-J, Seymen F, Koruyucu M, Kasimoglu Y, Gencay K, Shin TJ, et al. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta. Oral Dis. 2016 May; 22(4): 297–302. DOI : https://doi-org.gate2.inist.fr/10.1111/odi.12439
Yuen WY, Pasmooij AMG, Stellingsma C, Jonkman MF. Enamel defects in carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. Acta Derm Venereol. 2012 Nov; 92(6): 695–6. DOI:10.2340/00015555-1341
McGrath JA, Gatalica B, Li K, Dunnill MG, McMillan JR, Christiano AM, et al. Compound heterozygosity for a dominant glycine substitution and a recessive internal duplication mutation in the type XVII collagen gene results in junctional epidermolysis bullosa and abnormal dentition. Am J Pathol. 1996 Jun; 148(6): 1787–96
Wright JT, Johnson LB, Fine JD. Development defects of enamel in humans with hereditary epidermolysis bullosa. Arch Oral Biol. 1993 Nov; 38(11): 945–55. DOI: 10.1016/0003-9969(93)90107-w
Nakamura H, Sawamura D, Goto M, Nakamura H, Kida M, Ariga T, et al. Analysis of the COL17A1 in nonHerlitz junctional epidermolysis bullosa and amelogenesis imperfecta. Int J Mol Med. 2006 Aug; 18(2): 333–7. DOI: https://doi.org/10.3892/ijmm.18.2.333
Pasmooij AMG, Pas HH, Jansen GHL, Lemmink HH, Jonkman MF. Localized and generalized forms of blistering in junctional epidermolysis bullosa due to COL17A1 mutations in the Netherlands. Br J Dermatol. 2007 May; 156(5): 861–70. DOI: https://doi.org/10.1111/j.1365-2133.2006.07730.x
Gostyńska KB, Yuen WY, Pasmooij AMG, Stellingsma C, Pas HH, Lemmink H, et al. Carriers with functional null mutations in LAMA3 have localized enamel abnormalities due to haploinsufficiency. Eur J Hum Genet.
Jan; 25(1): 94–9. DOI: https://doi.org/10.1038/ejhg.2016.136
Wang X, Zhao Y, Yang Y, Qin M. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta. PloS One. 2015; 10(3): e0116514. DOI: https://doi.org/10.1371/journal.
pone.0116514
Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, et al. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics. 2005 Jan 27; 6:11. DOI: https://doi.org/10.1186/1471-2164-6-11
Cui J, Xiao J, Tagliabracci VS, Wen J, Rahdar M, Dixon JE. A secretory kinase complex regulates extracellular protein phosphorylation. eLife. 2015 Mar 19; 4:e06120. DOI: https://doi.org/10.7554/eLife.06120.001
Cui J, Zhu Q, Zhang H, Cianfrocco MA, Leschziner AE, Dixon JE, et al. Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. eLife. 2017 22; 6. DOI: https://doi.org/10.7554/eLife.23990.001
Ohyama Y, Lin J-H, Govitvattana N, Lin I-P, Venkitapathi S, Alamoudi A, et al. FAM20A binds to and regulates FAM20C localization. Sci Rep. 2016 13; 6:27784. DOI: https://doi.org/10.1038/srep27784
Lignon G, Beres F, Quentric M, Rouzière S, Weil R, De La Dure-Molla M, et al. FAM20A Gene Mutation:
Amelogenesis or Ectopic Mineralization? Front Physiol. 2017; 8:267. DOI: https://doi.org/10.3389/fphys.2017.00267
de la Dure-Molla M, Quentric M, Yamaguti PM, Acevedo A-C, Mighell AJ, Vikkula M, et al. Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare
Dis. 2014 Jun 14; 9:84. DOI: https://doi.org/10.1186/1750-1172-9-84
Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. MolCell. 1998 Sep; 2(3): 305–16. DOI: https://doi-org.gate2.inist.fr/10.1016/S1097-2765(00)80275-0
Alves LU, Pardono E, Otto PA, Mingroni Netto RC. A novel c.1037C > G (p.Ala346Gly) mutation in TP63 as cause of the ectrodactyly-ectodermal dysplasia and cleft lip/palate (EEC) syndrome. Genet Mol Biol.
Mar; 38(1): 37–41. DOI: 10.1590/S1415-475738120140125
Kantaputra PN, Matangkasombut O, Sripathomsawat W. Split hand-split foot-ectodermal dysplasia and amelogenesis imperfecta with a TP63 mutation. Am J Med Genet A. 2012 Jan; 158A(1): 188–92. DOI:
https://doi-org.gate2.inist.fr/10.1002/ajmg.a.34356
Luder HU, Gerth-Kahlert C, Ostertag-Benzinger S, Schorderet DF. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene. PloS One. 2013; 8(10): e78529. DOI: https://doi.org/10.1371/journal.pone.0078529
Cherkaoui Jaouad I, Lyahyai J, Guaoua S, El Alloussi M, Zrhidri A, Doubaj Y, et al. Novel splice site mutation in CNNM4 gene in a family with Jalili syndrome. Eur J Med Genet. 2017 May; 60(5): 239–44. DOI: https://doi.org/10.1016/j.ejmg.2017.02.004
Jalili IK. Cone-rod dystrophy and amelogenesis imperfecta (Jalili syndrome): phenotypes and environs. Eye Lond Engl. 2010 Nov; 24(11): 1659–68. DOI: https://doi.org/10.1038/eye.2010.103
Topçu V, Alp MY, Alp CK, Bakır A, Geylan D, Yılmazoğlu MÖ. A new familial case of Jalili syndrome caused by a novel mutation in CNNM4. Ophthalmic Genet. 2017 Apr; 38(2): 161–6. DOI: https://doi-org.gate2.inist.fr/10.3109/13816810.2016.1164192
Schossig A, Wolf NI, Fischer C, Fischer M, Stocker G, Pabinger S, et al. Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome. Am J Hum Genet. 2012 Apr 6; 90(4): 701–7. DOI: https://doi.org/10.1016/j.
ajhg.2012.02.012
Schossig A, Wolf NI, Kapferer I, Kohlschütter A, Zschocke J. Epileptic encephalopathy and amelogenesis imperfecta: Kohlschütter-Tönz syndrome. Eur J Med Genet. 2012 May; 55(5): 319–22. DOI: https://doi.
org/10.1016/j.ejmg.2012.02.008
Aswath N, Ramakrishnan SN, Teresa N, Ramanathan A. A novel ROGDI gene mutation is associated with Kohlschutter-Tonz syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018 Jan; 125(1): e8–11. DOI:
https://doi.org/10.1016/j.oooo.2017.09.016
Huckert M, Mecili H, Laugel-Haushalter V, Stoetzel C, Muller J, Flori E, et al. A Novel Mutation in the ROGDI Gene in a Patient with Kohlschütter-Tönz Syndrome. Mol Syndromol. 2014 Dec; 5(6): 293–8. DOI: https://doi-org.gate2.inist.fr/10.1159/000366252
Verloes A, Jamblin P, Koulischer L, Bourguignon JP. A new form of skeletal dysplasia with amelogenesis imperfecta and platyspondyly. Clin Genet. 1996 Jan; 49(1): 2–5. DOI: https://doi-org.gate2.inist.fr/10.1111/j.1399-0004.1996.tb04315.x
Huckert M, Stoetzel C, Morkmued S, Laugel-Haushalter V, Geoffroy V, Muller J, et al. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Hum Mol Genet. 2015 Jun 1; 24(11): 3038–49. DOI: https://doi-org.gate2.inist.fr/10.1093/hmg/ddv053
Dugan SL, Temme RT, Olson RA, Mikhailov A, Law R, Mahmood H, et al. New recessive truncating mutation in LTBP3 in a family with oligodontia, short stature, and mitral valve prolapse. Am J Med Genet A. 2015 Jun; 167(6): 1396–9. DOI: https://doi-org.gate2.inist.fr/10.1002/ajmg.a.37049
agliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012 Jun 1; 336(6085): 1150–3. DOI: 10.1126/science.1217817
Pollak AJ, Haghighi K, Kunduri S, Arvanitis DA, Bidwell PA, Liu G-S, et al. Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc Natl Acad Sci U S A. 2017 22; 114(34): 9098–103. DOI: https://doi-org.gate2.inist.fr/10.1073/pnas.1706441114
Oya K, Ishida K, Nishida T, Sato S, Kishino M, Hirose K, et al. Immunohistochemical analysis of dentin matrix protein 1 (Dmp1) phosphorylation by Fam20C in bone: implications for the induction of biomineralization.Histochem Cell Biol. 2017 Mar; 147(3): 341–51. DOI: https://doi.org/10.1007/s00418-016-1490-z
Acevedo AC, Poulter JA, Alves PG, de Lima CL, Castro LC, Yamaguti PM, et al. Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med Genet. 2015 Feb 21; 16:8. DOI: https://doi.org/10.1186/s12881-015-0154-5
Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad
Sci U S A. 2009 Sep 8; 106(36): 15350–5. DOI: https://doi-org.gate2.inist.fr/10.1073/pnas.0907724106
Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013 Apr; 93(2): 525–69. DOI: https://doi-org.gate2.inist.fr/10.1152/physrev.00019.2012
Bardet C, Courson F, Wu Y, Khaddam M, Salmon B, Ribes S, et al. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. J Bone Miner Res Off J Am Soc
Bone Miner Res. 2016 Mar; 31(3): 498–513. DOI: https://doi-org.gate2.inist.fr/10.1002/jbmr.2726
Lee NPY, Tong MK, Leung PP, Chan VW, Leung S, Tam P-C, et al. Kidney claudin-19: localization in distal tubules and collecting ducts and dysregulation in polycystic renal disease. FEBS Lett. 2006 Feb 6; 580(3):
–31. DOI: https://doi-org.gate2.inist.fr/10.101/j.febslet.2006.01.019
Yamaguti PM, Neves F de AR, Hotton D, Bardet C, de La Dure-Molla M, Castro LC, et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet. 2017; 54(1): 26–37. DOI: http://dx.doi.org.gate2.inist.fr/10.1136/jmedgenet-2016-103956
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2019 Revista Facultad de Odontología Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
Copyright comprises moral and patrimonial rights.
1. Moral rights: are born at the moment of the creation of the work, without the need to register it. They belong to the author in a personal and unrelinquishable manner; also, they are imprescriptible, unalienable and non negotiable. Moral rights are the right to paternity of the work, the right to integrity of the work, the right to maintain the work unedited or to publish it under a pseudonym or anonymously, the right to modify the work, the right to repent and, the right to be mentioned, in accordance with the definitions established in article 40 of Intellectual property bylaws of the Universidad (RECTORAL RESOLUTION 21231 of 2005).
2. Patrimonial rights: they consist of the capacity of financially dispose and benefit from the work trough any mean. Also, the patrimonial rights are relinquishable, attachable, prescriptive, temporary and transmissible, and they are caused with the publication or divulgation of the work. To the effect of publication of articles in the journal Revista de la Facultad de Odontología, it is understood that Universidad de Antioquia is the owner of the patrimonial rights of the contents of the publication.
The content of the publications is the exclusive responsibility of the authors. Neither the printing press, nor the editors, nor the Editorial Board will be responsible for the use of the information contained in the articles.
I, we, the author(s), and through me (us), the Entity for which I, am (are) working, hereby transfer in a total and definitive manner and without any limitation, to the Revista Facultad de Odontología Universidad de Antioquia, the patrimonial rights corresponding to the article presented for physical and digital publication. I also declare that neither this article, nor part of it has been published in another journal.
Open Access Policy
The articles published in our Journal are fully open access, as we consider that providing the public with free access to research contributes to a greater global exchange of knowledge.
Creative Commons License
The Journal offers its content to third parties without any kind of economic compensation or embargo on the articles. Articles are published under the terms of a Creative Commons license, known as Attribution – NonCommercial – Share Alike (BY-NC-SA), which permits use, distribution and reproduction in any medium, provided that the original work is properly cited and that the new productions are licensed under the same conditions.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.