Efecto de la súper refrigeración sobre la textura de la carne de matrinxã (Brycon cephalus)

Authors

  • Héctor Suárez Mahecha
  • Sandra C. Pardo Carrasco
  • Luiz Henrique Beirão
  • Alicia De Francisco
  • Laura L. Okada Nagaky

DOI:

https://doi.org/10.17533/udea.rccp.324046

Keywords:

Bryconinae, collagen, connective tissue, post mortem

Abstract

Resumen

Para determinar los mecanismos que causan el ablandamiento post-mortem de la carne del pez matrinxã, fueron observados los cambios en la micro estructura del tejido muscular inmediatamente después de la muerte y después de 12 horas de almacenamiento a -3 ºC. Las observaciones realizadas con microscopio electrónico de transmisión, presentan concordancia con los resultados obtenidos en la fuerza de ruptura muscular obtenidos con texturómetro. Los valores de la fuerza de ruptura fueron menores para la carne del matrinxã, después de la súper refrigeración. Al mismo tiempo, se observó que las fibras del tejido conectivo pericelular fueron desintegradas. Además, fue observada poca degradación de la línea Z. Se sugiere que el ablandamiento post-mortem de la carne del matrinxã, como efecto de la súper refrigeración, sea debido a la desintegración de las fibras de colágeno en el tejido conectivo pericelular y en menor grado a la degradación de la línea Z.

Summary

To determine the mechanisms that cause the post mortem muscle softness of the matrinxã, the changes were observed immediately after death in the micro structure of the muscle and after 12 hours of storage at -3 ºC. Observations by transmission electron microscope agree with the results obtained noting the breaking strength in the muscle measured with a texturometer. The values of the breaking strength on the fish muscle were smaller after chilling. At the same time, it was observed that collagen fibers in the pericellular connective tissue had disintegrated. On the other hand, no evident breakdown of Z-discs was observed. It is suggested that the post-mortem tenderization of matrinxã muscle during chilled storage was due to the disintegration of collagen fibers in the pericellular connective tissue, and, to a smaller degree, to the weakening of Z-disk.

 

|Abstract
= 146 veces | PDF
= 50 veces|

Downloads

Download data is not yet available.

References

Adachi E, Hayashi T. In vitro formation of hybrid fibrils oftype V collagen and type I collagen. Conn. Tissue Res. 1986;14: 257-266. DOI: https://doi.org/10.3109/03008208609017469

Alasalvar C, Taylor K. D, Shahidi S. Comparative QualityAssessment of Cultured and Wild Sea Bream Sparus aurataStored in Ice. J. Agri. and. Food Chem. 50, p2039-2045, 2002. DOI: https://doi.org/10.1021/jf010769a

Ando M. Softening mechanism of fish meat. Suisangaku Series.Kouseisha Kouseikaku. Tokyo. Japan. 1997; 114: 73-82.

Ando M, Nishiyabu A, Tsukamasa Y, Makinodan Y. Post-mortem softening of fish muscle during chilled storage asaffected by bleeding. J. of Food Sci. 1999; 64 (3): 423-428. DOI: https://doi.org/10.1111/j.1365-2621.1999.tb15056.x

Ando M, Toyohara H, Sakaguchi, M. Post-mortemtenderization of rainbow trout muscle caused by thedisintegration of collagen fibers in the pericellular connectivetissue. Bull. Japan Society Sci. of Fish. 1992; 58: 567-570. DOI: https://doi.org/10.2331/suisan.58.567

Ando M, Toyohara H, Shimizu Y, Sakaguchi M. Validity ofla puncture test for evaluating the change in muscle firmnessof fish during ice storage. Nippon Suisan Gakkaishi. 1991;57: 2341. DOI: https://doi.org/10.2331/suisan.57.2341

Ando M, Toyonara H, Shimizu, Y, Sakaguchi M. Post-mortemtenderization of rainbow trout (Oncorhychus mykiss) musclecaused by gradual disintegration of the extracellular matrixstructure. J. Sci. Food Agri. 1991b; 55: 589-597. DOI: https://doi.org/10.1002/jsfa.2740550410

Ando M, Yoshimoto Y, Inabu K, Nakagawa T, MakimodanY. Post-mortem change of three-dimensional structure ofcollagen fibrillar network in fish muscle pericellular connectivetissues corresponding to post-mortem tenderization.Fisheries Sci. 1995; 61: 327-330. DOI: https://doi.org/10.2331/fishsci.61.327

Birk DE, Fitch MJ, Babiarz PI. Linsenmyer ET. Fibrogenesisin vitro: interaction of type I and V collagen regulates fibrildiameter, J. Cellular Sci. 1990; 95: 649-657. DOI: https://doi.org/10.1242/jcs.95.4.649

Bornstein H, Sage H. Structurally distinct collagen types,Ann. Rev. Bioche. 1980; 49: 957-1003. DOI: https://doi.org/10.1146/annurev.bi.49.070180.004521

Bugeon J, LefËvre F, Fauconneau B. Correlated changes inskeletal muscle connective tissue and flesh texture duringstarvation and re-feeding in brown trout (Salmo trutta) rearedin seawater. Journal of the Science of Food and Agriculture2004; 84; 11. †1433-1441. DOI: https://doi.org/10.1002/jsfa.1837

Bremmer AH, Hallet, CI. Muscle fiber-connective tissuejunctions in the fish blue grenadier (Macruronusnovaezelandiae). a scanning electron microscope study. J. ofFood Sci. 1985; 50: 975-980. DOI: https://doi.org/10.1111/j.1365-2621.1985.tb12993.x

Bremmer AH, Hallet, CI. Degradation muscle fibre-connectivetissue junctions in the Spotted Trevalla (Seriolella punctata)Examined by Scanning Electron Microscopy. J. of Sci. Foodand Agri. 1986; 37: 1011-1018. DOI: https://doi.org/10.1002/jsfa.2740371009

Graef EW, Resende EK, Petry P, Storti Filho A. Policultivode matrinch„ (Brycon sp) y jaraqui (Semaprochilodus sp)en pequenas represas. Acta AmazÙnica, 1987; 16/17, No. ̇nico. 33-42. DOI: https://doi.org/10.1590/1809-43921987175042

Guimar„es SF, Storti-Filho A. The effects of temperature onsurvival of young Matrinch„ (Brycon cephalus) under laboratoryconditions. In: Internacional Symposium Biology of TropicalFishes, Manaus, AM. Livro de Resumos, 1997; 41.

Hallet CI, Bremmer AH. Fine estructure of the myocommatamuscle fiber junction in hoki (Macruronus novaezelandie).J. of Sci. Food and Agri. 1988; 44: 245-261. DOI: https://doi.org/10.1002/jsfa.2740440306

Hatae K, Lee K. H, Tsuchiya T, Shimada A. Texturalproperties of cultured and wild fish meat. Bull. Japan SocietySci. of Fish. 1989; 55: 363-368. DOI: https://doi.org/10.2331/suisan.55.363

Hatae K, Tamari S, Miyanaga K, Matsumoto J. Speciesdifference and changes in the physical properties of fishmuscle as freshness decreases. Bull. Japan Society Sci. ofFish. 1985; 51: 1155-1161. DOI: https://doi.org/10.2331/suisan.51.1155

Hatae K, Tobimatsu A, Takeyama M, Matsumoto J.Contribution of connective tissues on the texture differenceof varies fish species. Bull. Japan Society Sci. of Fish. 1986;52: 2001-2007. DOI: https://doi.org/10.2331/suisan.52.2001

Kubota S, Sata k, Ohstsuki k, Kawabata M. Degradation dea-connectin in raw fish muscle and softening evaluated bybreaking strength occur independently during one chilledstorage. Fisheries Sci.1993; 3: 600-602. DOI: https://doi.org/10.2331/fishsci.62.600

Kubota M, Kinoshita M, Takeuchi K, Kubota S, ToyoharaH, Sakaguchi M. Solubilization of type I collagen from fishmuscle connective tissue by matrix metalloproteinase-9 atchilled temperature. Fisheries Scie. 69, 5, p1053-1059, 2003. DOI: https://doi.org/10.1046/j.1444-2906.2003.00726.x

Kumano Y, Seki N. Change in a-connecting content duringstorage of iced, frozen, and thawed fish muscle. NipponSuisan Gakkaishi. 1993; 59: 559-564. DOI: https://doi.org/10.2331/suisan.59.559

Love RM. Biochemical dynamics and the quality of freshand frozen fish, In: Fish Processing Technology, G. M.HALL. (Eds) Blache Academic G. Prossional. Glasgow (UK)1992; 1-27. DOI: https://doi.org/10.1007/978-1-4613-1113-3_1

Love RM, Haq M, Smith GL. The connective tissues offish V. Gaping in cod of different sizes as influenced by laseasonal variation in the ultimate Ph. J. of Food Tech. 1972;7: 281-290. DOI: https://doi.org/10.1111/j.1365-2621.1972.tb01663.x

Love RM, Lavety J, Steel PJ. The connective tissues of fishll. Gaping in commercial species of frozen fish in relation torigor mortis. J. of Food Tech. 1969;4: 39-44. DOI: https://doi.org/10.1111/j.1365-2621.1969.tb01495.x

Mochizuki S, Sato A. Effects of various killing procedureson post-mortem changes in the muscle of hose mackerel.Bull. Japan Society Sci. of Fish. 1996;.64: 276-279.

Montero P, Borderias J. Effect of rigor mortis and ageing oncollagen in trout (Salmo irideus) muscle. J. Sci. Food Agri.1990;.52: 141-146. DOI: https://doi.org/10.1002/jsfa.2740520116

Oka H, Ohno K, Ninomiya J. Changes in texture during coldstorage of cultured yellowtail meat prepared by differentkilling methods. Bull. Japan Society Sci. of Fish. 1990; 6:1673-1678. DOI: https://doi.org/10.2331/suisan.56.1673

Pezzato LE, Barros MM, Del Carratore CR, Salaro AL,Oliveira MCB. AvaliaÁ„o do matrinx„ (Brycon cephalus)mantidos sob condiÁıes de clima sub tropicalî, In: SimpÛsiobrasileiro de aq ̧icultura, 8, Piracicaba. Livro deResumos.1994; 62.

Sato K, Yoshinaka R, Itoh Y, Sato M. Molecular species ofcollagen in the intramuscular connective tissue of fish.Composition Bioche. and Physiolo. . 1988a; 92B (1): 87-91. DOI: https://doi.org/10.1016/0305-0491(89)90317-9

Sato K, Yoshinaka R, Sato M, Itoh Y, Shimizu Y. Isolation oftypes I and V Collagens from carp muscle. Compo. Bioche.and Physio. 1988; 90B (1): 155-158. DOI: https://doi.org/10.1016/0305-0491(88)90053-3

Sato K, Ando M, Kubota S, Origasa K, Kawase H, et al.Involvement of type V collagen in softening of fish muscleduring short-term chilled storage. J. of Agri. Food Chemi.1997; 45: 343-348. DOI: https://doi.org/10.1021/jf9606619

Sato k, Ohashi C, Ohtsuki K, Kawabata M. Type V collagenin trout (Salmo gairdneri) muscle and its solubility changechilled storage of muscle. J. of Agri. Food Chemi. 1991; 39:1222-1225. DOI: https://doi.org/10.1021/jf00007a005

Sato K, Yoshimaka R, Sato M, Shimizu Y. Collagen contentin the muscle of fishes in association with their swimmingmovement and meat texture. Bull. Japan Society Sci. of Fish.1986; 52: 1595-1600. DOI: https://doi.org/10.2331/suisan.52.1595

Skjervold P. O, FjÊra S O, Ostby P B, Einen O. Live-chillingand crowding stress before laughter of Atlantic salmon Salmosalar. Aquaculture, 192. p265ñ280, 2002. DOI: https://doi.org/10.1016/S0044-8486(00)00447-6

Tachibana K, Misima T, Tsuchimoto M. Changes ofultrastructure and cytochemical Mg2+-ATPase activity inordinary muscle of cultured and wild red sea bream duringstorage in ice. Bul. Japan Society Sci. of Fish. 1993; 59: 721-727. DOI: https://doi.org/10.2331/suisan.59.721

Toyohara H, Shimizu Y. Relation of the rigor mortis of fishbody and the texture of the muscle.Bull. Japan Society Sci.of Fish. 1988; 54:1795-1798. DOI: https://doi.org/10.2331/suisan.54.1795

Yamashita M, Kanagaya S. Hydrolytic of salmon cathepsins Band L to muscle structural proteins in respect of muscle softening.Bull. Japan Society Sci. of Fish. 1991a; 57: 1917-1922. DOI: https://doi.org/10.2331/suisan.57.1917

Yamashita M, Kanagaya S. Inmunohistochemical localizationof cathepsins B and L in the white muscle of chum salmon(Oncorhynchus keta) in spawing migration: Probableparticipation of fagocytes rich in cathepsins in extensivemuscle softening of the nature salmon. J. of Agri. Food Chemi.1991b; 39: 1402-1405. DOI: https://doi.org/10.1021/jf00008a009

Downloads

Published

2016-07-21

How to Cite

Suárez Mahecha, H., Pardo Carrasco, S. C., Beirão, L. H., De Francisco, A., & Okada Nagaky, L. L. (2016). Efecto de la súper refrigeración sobre la textura de la carne de matrinxã (Brycon cephalus). Revista Colombiana De Ciencias Pecuarias, 19(2), 7. https://doi.org/10.17533/udea.rccp.324046

Issue

Section

Original research articles

Most read articles by the same author(s)