Interacción de los suelos sulfatados ácidos con el agua y sus efectos en la sobrevivencia del bocachico (Prochilodus magdalenae) en cultivo


  • Sandra C. Pardo Carrasco
  • Héctor Suárez Mahecha
  • Vicente M. Pertuz Buelvas



Prochilodus magdalenae, pyrite oxidation, sulfate soil acids, PH



Aquaculture in coastal areas grows rapidly. For fish ponds construction, soil is dug and used as material for the conformation of dikes, frequently originating the exposure of Acid Sulphate Soils (ASS) containing extreme acidity, a saturation percentage less than 50% and exchangeable aluminum higher than 5 Cmol+Kg-1. When ASS is exposed to air, iron pyrite (FeS2) oxidizes (FeSO4) and produces H2SO4whose dissociation in water reduces pH values inferior to 4. Flooded SSA may have a pH between 5 and 7; nevertheless, when they are drained and exposed to air pH drops to 2 or 3. A 1.5ha pond was built in the municipality of Cotorra (Córdoba), removing and exposing soil. Then, it was flooded with wetland water (pH 6.5; OD 3 mg/l; alkalinity 120 mg/l) and cultured with 10.000 bocachico alevins; an hour later, all fish were dead. In order to determine the possible cause of death, soil, water and gills were analyzed. The soil analysis showed an ASS with acid pH, high content of organic matter and high levels of S, Fe and Mn. Water analysis showed a lethal pH for most of the fish; likewise Fe, Al and CO2 levels were above acceptable maximum. Microcirculatory alteration in gill's lamellar was found. It is suggested that the cause of death of bocachicos was the acidity of water due to the Na+/H+ exchange inhibition in gills caused by H+ and Al+ excess. This situation affected the permeability of gill epithelium increasing the loss of ions and the alteration of osmoregulation. It is evident that ASS absorb and release nutrients, exchanging substances with water and, this way, affecting their quality.


= 91 veces | PDF
= 24 veces|


Download data is not yet available.


Baldisserotto B. Fisiologia de peixes aplicada à piscicultura. Editora UFSM, 2002. 212p.

Booth CE, McDonald DG, Simons BP, Wood CM. Effects of aluminum and low pH on net ion fl uxes and ion balance in the brook trout (Salvelinus fontinalis).Can J Fish Aquat Sci 1988; 45:1563-1574.

Boyd CE, Wood CW, Thunjai T. Aquaculture pond bottom soil quality management. Pond Dynamics/Aquaculture Collaborative Research Support Program Oregon State University, Corvallis, Oregon. 2002.

Boyd CE, Zimmermann S. Grow-out systems: water quality and soil management. In: New, M.B. & Valenti, W.C. (Edit), Freshwater Prawn Culture. Blackwell Science, Oxford, England. 2000. 221-238.

Carvalho CS, Fernandes MN. Effect of temperature on copper toxicity and hematological responses in the neotropical fi sh Prochilodus scrofa at low and high pH. Aquaculture 2006; 251:109-117.

Carvalho CS, Selistic de Araujo HS, Fernández MN. Hepatic metallothionein in a teleost (Prochilodus scrofa) exposed to copper at pH 4.5 and pH 8.0. Comp Biochem Physiol Part B 2004; 225-234.

Combatt EM, Palencia G, Marin N. Clasifi cación de suelos sulfatados ácidos según azufre extraíble en los municipios del medio y bajo Sinú en Córdoba. Temas Agrarios 2003; 8:22-29.

Combatt E. Efecto del encalamiento y el lavado sobre algunas propiedades químicas de un suelo sulfatado ácido magnésico del valle del río Sinú. Tesis M.Sc. Universidad Nacional de Colombia – Universidad de Córdoba, Montería. 2004.

Dent D. Acid Sulfate Soils: A Baseline for Research and Development. International Institute of Land Reclamation and Improvement, Wageningen, The Netherlands, Publication 39, 1986.Dietrich D,Schlatter C. Aluminium toxicity to rainbow trout at low pH. Aquatic toxicol 1989; 15:197-212.

Driscoll CT, Baker JP, Bisogni JJ, Schotield CL. Effect of aluminumspeciation on fi sh in dilute acidifi ed waters. Nature (Land) 1980; 2134:161-164.

Enserink EL, Maasdiepeveen JL, Vanleeuwen CJ. Combined effects of metals and ecotoxicological evaluation. Water Res 1991; 25:679-687.

Eslava PR, Ramírez WF, Rondón I. Sobre los efectos del glifosato y sus mezclas: impacto en peces nativas. Universidad de los Llanos. 2007. 150p.

Finlayson BJ, Verrue KM. Toxicities of mixtures of copper. LC and cadmium mixtures to juvenilechinook salmon. Trans Am Fish Sot 1982; 1 II. p. 645-650.

Fleming JF, Alexander LT. Sulfur acidity in South Carolina tidal marsh soils. Soil Sci Soc Amer Proc1961; 25:94-95.

Fromm PO. A review of some physiological and toxicological responses of freshwater fi sh to acid stress. Environ Biol Fish 1980; 5:79-93.

Gonzalez RJ. Ion regulation in ion poor waters of low pH. In: VAL, A.L. et al. (Ed.). Physiology and biochemistry of the fi shes of the Amazon. Manaus: INPA. 1996.

Gonzalez RJ, Wilson RW, Wood CM. Ion regulation in tropical fi shes from ion poor, acid black waters. In: VAL AL, DE Almeida-VaL VMF, Randall D. (Ed.). The physiology of tropicarl fi shes, Vol 21 Fish Physiology series, 2006. p. 397-442.

Grosell M, Nielsen C, Bianchini A. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol 2002; 133(C):287-303.

Heath A. Water pollution and fi sh physiology. 2nd edition. CRC Press, Boca Raton. 1995.Henriksen A, Skogheim OK, Rosseland BO. Episodic changes in pH and aluminum speciation kill fi sh in Norwegian salmon river. Vatten 1984; 40:255-260

.Hickling CF. Recommendations for constructions and management of brackishwater aquaculture ponds in areas with acid sulfate soils. FAO Fisheries Circular No. 658, 1974. pp. 243-260.

Hutchinson NJ, Sprague JB. Toxicity of trace metal mixtures to American fl agfi sh (Jordanella fl oridae) in soft acidic water and implications for cultural acidifi cation. Can J Fish Aquat Sci1986; 43:647-655

Kirk R, Lewis J. An evaluation of pollutant induced changes in the gills of rainbow trout using scanning electron microscopy. Environ Technol; 1993; 14: 577-585.

Lahav O, Ritvo G, Slijper I, Hearne G, Cochva M. The potential of using iron-oxide-rich soils for minimizing the detrimental effects of H2S in freshwater aquaculture systems. Aquaculture 2004; 238:263-281.

Laitinen M, Valtonen T. Cardiovascular, ventilatory and haematological responses of brown trout (Salmo trutta L), to the combined effects of acidity and aluminium in humic water at winter temperatures. Aquatic Toxicol 1995; 31:99-112.

Lawson T. Fundamentals of aquacultural engineering. New York: Chapman & Hall, 1995.

Macintosh DJ. Fisheries and aquaculture signifi cance of mangrove swamps with special reference to the Indo-West Pacifi c Region. In: J H Muir and R J Roberts (Editors). Recent advances in aquaculture. Westview Press, USA, 1982. p. 3-85.

Mallatt J. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J fi sh Aq Sci 1985; 42: 630-648.

Mazon AF, Nolan DT, Lock RAC, Fernandes MN, Wendelaar Bonga SE A short-term in vitro gill culture system to study the effects of toxic (copper) and non-toxic (cortisol) stressors on the rainbow trout, Oncorhynchus mykiss(Walbaum). Toxicol In Vitro 2004;18:691-701.

McDonald DG, Reader JP, Dalziel TRK. The combined effects of pH and trace metals on fi sh ionoregulation. In: Morris, R., Taylor, E.W., Brown, D.J.A., Brown, J.A. (Eds.), Acid Toxicity and Aquatic Animals. Cambridge University Press, Cambridge, 1989. p. 221-242.

Morales J, Gertrudix L, Rodriguez J, Berrocal D, Chien Y. Problemática de los fondos en el engorde de peces y crustáceos marinos en tanques de tierra. In: Engorde y Maduración de Camarones Peneidos. Vol. II. Programa Iberoamericano de Ciencia y Tecnología para el desarrollo. Subprograma II, Acuicultura, CITED-D. San José, 1992. p. 15-22.

Moreira Márquez HL, Vargas L, Ribeiro PR, Zimmermann S. Fundamentos da moderna aqüicultura. Canoas: Ed. ULBRA (Bra). 2001.Nelson WO, Campbell PGC. Review of the effects of acidifi cation the geochemical of Al, Cd, Pb and Hg in freshwater environments. Environ Pollut 1991; 71:91-130.

Neville CM. Physiological response of juvenile rainbow trout Salmo gairdneri, to acid and aluminum prediction of fi eld responses from laboratory data. Can. J Fish Aquat Sci 1985; 42:2004-2019.

NRS-SBCS. COMISSÃO DE FERTILIDADE DO SOLO. Recomendações de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina. Passo Fundo: 1995.Payan P, Girard JP. Branquial ion movements in teleosts: the roles of respiratory and chloride cells. In Fish Physiology Vol XB, Hoar WS, Randall DL Edis. 1984.

Playle RC, Goss GG, Wood CM. Physiological disturbances in rainbow trout (Salmo gairdneri)during acid and aluminum exposures in soft water of two calcium concentrations. Can J Zool 1988; 67:314-324.

Potts WTW. Kinetics of sodium uptake in freshwater animals: a comparison of ion exchange and proton pumphypothesis. Am J PhysiolBethesda. 1994; 226:315-320.

Rattner BA, Heath AG. Factors affecting contaminant toxicity in aquatic and terrestrial vertebrates. In: Handbook of Ecotoxicology. Hoffman DJ, Rattner BA, Burton AG, Cairns J. Eds., Lewis Publishers, Boca Raton, Fl. 1994.

Singh VP. Kinetics of acidifi cation during drying and inundation of acid sulfate soil material. Implications for the management of brackishwater fi sh ponds. In: H. Dost (Editor). Proc Int. Sym Acid Sulfate Soils; Publication 31. International Institute for land Reclamation and Improvement. Bangkok, Thailand. 1981 pp. 33I-351.

Staurnes M, Sigholt T, Reite OB. Reduced carbonic anhydrasa and Na-K-ATPase activity in gills of salmonids exposed to aluminum-containing acid water. Experientia 1984; 40:226-234.

Tacon A. Nutrición y alimentación de peces y camarones cultivados. Manual de Capacitación- GCP/RLA/102/ITA. Proyecto Aquila II. Documento de Campo N° 4. FAO, Brasilia, Brasil; 1989

.Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environmental Pollution 121 (2003) 307-320.

Vinatea L. Principios químicos de qualidade da água para peixes e camarões. UFSC, Florianópolis; 2004.Wangsongsak A, Utarpongsa S, Kruatrachue M, Ponglikitmonkol M, Pokethitiyook P, Sumranwanich T. alterations of organ histopathology and metallothionein mRNA expression in Siver barb, Puntius gonionotus during subchrinic cadmium exposure. J Environ Sci, 2007; 19:1341-1348.

Weatherley AH, Lake PS, Stahal PL. Zinc pollution and ecology of the environment. In: Nriagu JO, ed. Zinc in the environment. Part 1: Ecological cycling. New York, NY: John Wiley; 1988. p. 337-417.

Wedemeyer GA. Physiology of Fish Intensive Culture Systems. Chapman and Hall, New York; 1996. 231p.Wendelaar Bonga SE. The stress response in fi sh. Physiol Rev 1997; 77: 591-625.

Wood CM. Flux measurements as indices of H+ and metal effects on freshwater fi sh. Aquatic Toxicol 1992; 22:239-253Wood CM. Toxic responses of the gill. In: Schlenk DS, Benson WH. (Eds.), Target Organ Toxicity in Marine and Freshwater Teleosts, vol. 1. Taylor and Francis, London; 2001. pp. 1-89.

Zaions MI, Baldisseroto B. Na+ and K+ body levels and survival of fi ngerlings of Rhamdia quelen (Siluriformes, Pimelodidae) exposed to acute changes of water pH. Ciência Rural 2000; 30:1041-1045.

Zaniboni-Filho E, Meurer S, Golombieski J I, Silva L V F, Baldisserotto B. Survival of Prochilodus lineatus (Valenciennes) fi ngerlings exposed to acute pH changes. Acta Scientiarum Maringá 2002; 24:917-920.




How to Cite

Pardo Carrasco, S. C., Suárez Mahecha, H., & Pertuz Buelvas, V. M. (2009). Interacción de los suelos sulfatados ácidos con el agua y sus efectos en la sobrevivencia del bocachico (Prochilodus magdalenae) en cultivo. Revista Colombiana De Ciencias Pecuarias, 22(4), 13.



Original research articles

Most read articles by the same author(s)