Interação dos solos sulfatados ácidos com a água e seus efeitos na sobrevivência do bocachico (Prochilodus magdalenae) em cultivo
DOI:
https://doi.org/10.17533/udea.rccp.324496Palavras-chave:
bocachico, Prochilodus magdalenae,, solos sulfatados ácidosResumo
A aqüicultura nas zonas costeiras cresce rapidamente e para a construção de estanques utilizam-se manguezais pantanais e banhados. Na construção, o solo é escavado e usado como material para a conformação dos diques, originando freqüentemente a exposição de solos ácidos (SSA) que possuem extrema acidez, porcentagem de saturação menor ao 50% e alumínio intercambiável maior de 5 Cmol+Kg-1de solo. Quando este solo é exposto ao ar, a pirita de ferro (FeS2) oxida-se (FeSO4) liberando H2SO4, o qual ao dissociar-se na água reduz o pH a valores inferiores de 4. Os SSA podem ter pH de 5 a 7 quando permanecem inundados, mas, sim são drenados e expostos ao ar, podem diminuir a 2 ou 3. No município de Cotorra (Córdoba), foi construído um estanque (1.5ha) removendo e expondo o solo. Posteriormente foi inundado com água de um pântano (pH 6.5; OD 3 mg/l; alcalinidade 120 mg/l) e foram plantados 10.000 alevinos de bocachico. Uma hora depois, todos os peixes morreram. Com o objetivo de determinar a possível causa de morte, foram analisados: o solo, a água e as brânquias. A análises do solo revela um SSA com pH ácido, alto conteúdo de matéria orgânica e níveis altos de S, Fe e Mn. A análises da água mostra um pH letal para a maioria de peixes, Fe, Al e CO2 por acima dos máximos permitidos. Nas brânquias foram encontradas alterações microcirculatória em lamelas branqueais. Sugere-se que a causa de morte dos bocachicos foi a acidez da água, devido à inibição do intercambio Na+/H+ nas brânquias por excesso de H+ e de Al+, afetando a permeabilidade do epitélio branquial incrementando a perda de íons, alterando mais a osmoregulação. É evidente que os SSa absorvem e liberam nutrientes, intercambiando sustâncias com a água afetando a qualidade.
Downloads
Referências
Baldisserotto B. Fisiologia de peixes aplicada à piscicultura. Editora UFSM, 2002. 212p.
Booth CE, McDonald DG, Simons BP, Wood CM. Effects of aluminum and low pH on net ion fl uxes and ion balance in the brook trout (Salvelinus fontinalis).Can J Fish Aquat Sci 1988; 45:1563-1574. DOI: https://doi.org/10.1139/f88-186
Boyd CE, Wood CW, Thunjai T. Aquaculture pond bottom soil quality management. Pond Dynamics/Aquaculture Collaborative Research Support Program Oregon State University, Corvallis, Oregon. 2002.
Boyd CE, Zimmermann S. Grow-out systems: water quality and soil management. In: New, M.B. & Valenti, W.C. (Edit), Freshwater Prawn Culture. Blackwell Science, Oxford, England. 2000. 221-238. DOI: https://doi.org/10.1002/9780470999554.ch14
Carvalho CS, Fernandes MN. Effect of temperature on copper toxicity and hematological responses in the neotropical fi sh Prochilodus scrofa at low and high pH. Aquaculture 2006; 251:109-117. DOI: https://doi.org/10.1016/j.aquaculture.2005.05.018
Carvalho CS, Selistic de Araujo HS, Fernández MN. Hepatic metallothionein in a teleost (Prochilodus scrofa) exposed to copper at pH 4.5 and pH 8.0. Comp Biochem Physiol Part B 2004; 225-234. DOI: https://doi.org/10.1016/j.cbpc.2003.11.004
Combatt EM, Palencia G, Marin N. Clasifi cación de suelos sulfatados ácidos según azufre extraíble en los municipios del medio y bajo Sinú en Córdoba. Temas Agrarios 2003; 8:22-29. DOI: https://doi.org/10.21897/rta.v8i2.616
Combatt E. Efecto del encalamiento y el lavado sobre algunas propiedades químicas de un suelo sulfatado ácido magnésico del valle del río Sinú. Tesis M.Sc. Universidad Nacional de Colombia – Universidad de Córdoba, Montería. 2004.
Dent D. Acid Sulfate Soils: A Baseline for Research and Development. International Institute of Land Reclamation and Improvement, Wageningen, The Netherlands, Publication 39, 1986.Dietrich D,Schlatter C. Aluminium toxicity to rainbow trout at low pH. Aquatic toxicol 1989; 15:197-212. DOI: https://doi.org/10.1016/0166-445X(89)90036-2
Driscoll CT, Baker JP, Bisogni JJ, Schotield CL. Effect of aluminumspeciation on fi sh in dilute acidifi ed waters. Nature (Land) 1980; 2134:161-164. DOI: https://doi.org/10.1038/284161a0
Enserink EL, Maasdiepeveen JL, Vanleeuwen CJ. Combined effects of metals and ecotoxicological evaluation. Water Res 1991; 25:679-687. DOI: https://doi.org/10.1016/0043-1354(91)90043-P
Eslava PR, Ramírez WF, Rondón I. Sobre los efectos del glifosato y sus mezclas: impacto en peces nativas. Universidad de los Llanos. 2007. 150p.
Finlayson BJ, Verrue KM. Toxicities of mixtures of copper. LC and cadmium mixtures to juvenilechinook salmon. Trans Am Fish Sot 1982; 1 II. p. 645-650. DOI: https://doi.org/10.1577/1548-8659(1982)111<645:TOCZAC>2.0.CO;2
Fleming JF, Alexander LT. Sulfur acidity in South Carolina tidal marsh soils. Soil Sci Soc Amer Proc1961; 25:94-95. DOI: https://doi.org/10.2136/sssaj1961.03615995002500020007x
Fromm PO. A review of some physiological and toxicological responses of freshwater fi sh to acid stress. Environ Biol Fish 1980; 5:79-93. DOI: https://doi.org/10.1007/BF00000954
Gonzalez RJ. Ion regulation in ion poor waters of low pH. In: VAL, A.L. et al. (Ed.). Physiology and biochemistry of the fi shes of the Amazon. Manaus: INPA. 1996.
Gonzalez RJ, Wilson RW, Wood CM. Ion regulation in tropical fi shes from ion poor, acid black waters. In: VAL AL, DE Almeida-VaL VMF, Randall D. (Ed.). The physiology of tropicarl fi shes, Vol 21 Fish Physiology series, 2006. p. 397-442. DOI: https://doi.org/10.1016/S1546-5098(05)21009-9
Grosell M, Nielsen C, Bianchini A. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol 2002; 133(C):287-303. DOI: https://doi.org/10.1016/S1532-0456(02)00085-6
Heath A. Water pollution and fi sh physiology. 2nd edition. CRC Press, Boca Raton. 1995.Henriksen A, Skogheim OK, Rosseland BO. Episodic changes in pH and aluminum speciation kill fi sh in Norwegian salmon river. Vatten 1984; 40:255-260
.Hickling CF. Recommendations for constructions and management of brackishwater aquaculture ponds in areas with acid sulfate soils. FAO Fisheries Circular No. 658, 1974. pp. 243-260.
Hutchinson NJ, Sprague JB. Toxicity of trace metal mixtures to American fl agfi sh (Jordanella fl oridae) in soft acidic water and implications for cultural acidifi cation. Can J Fish Aquat Sci1986; 43:647-655 DOI: https://doi.org/10.1139/f86-078
Kirk R, Lewis J. An evaluation of pollutant induced changes in the gills of rainbow trout using scanning electron microscopy. Environ Technol; 1993; 14: 577-585. DOI: https://doi.org/10.1080/09593339309385326
Lahav O, Ritvo G, Slijper I, Hearne G, Cochva M. The potential of using iron-oxide-rich soils for minimizing the detrimental effects of H2S in freshwater aquaculture systems. Aquaculture 2004; 238:263-281. DOI: https://doi.org/10.1016/j.aquaculture.2004.05.026
Laitinen M, Valtonen T. Cardiovascular, ventilatory and haematological responses of brown trout (Salmo trutta L), to the combined effects of acidity and aluminium in humic water at winter temperatures. Aquatic Toxicol 1995; 31:99-112. DOI: https://doi.org/10.1016/0166-445X(94)00060-4
Lawson T. Fundamentals of aquacultural engineering. New York: Chapman & Hall, 1995. DOI: https://doi.org/10.1007/978-1-4615-7047-9
Macintosh DJ. Fisheries and aquaculture signifi cance of mangrove swamps with special reference to the Indo-West Pacifi c Region. In: J H Muir and R J Roberts (Editors). Recent advances in aquaculture. Westview Press, USA, 1982. p. 3-85.
Mallatt J. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J fi sh Aq Sci 1985; 42: 630-648. DOI: https://doi.org/10.1139/f85-083
Mazon AF, Nolan DT, Lock RAC, Fernandes MN, Wendelaar Bonga SE A short-term in vitro gill culture system to study the effects of toxic (copper) and non-toxic (cortisol) stressors on the rainbow trout, Oncorhynchus mykiss(Walbaum). Toxicol In Vitro 2004;18:691-701. DOI: https://doi.org/10.1016/j.tiv.2004.03.008
McDonald DG, Reader JP, Dalziel TRK. The combined effects of pH and trace metals on fi sh ionoregulation. In: Morris, R., Taylor, E.W., Brown, D.J.A., Brown, J.A. (Eds.), Acid Toxicity and Aquatic Animals. Cambridge University Press, Cambridge, 1989. p. 221-242. DOI: https://doi.org/10.1017/CBO9780511983344.014
Morales J, Gertrudix L, Rodriguez J, Berrocal D, Chien Y. Problemática de los fondos en el engorde de peces y crustáceos marinos en tanques de tierra. In: Engorde y Maduración de Camarones Peneidos. Vol. II. Programa Iberoamericano de Ciencia y Tecnología para el desarrollo. Subprograma II, Acuicultura, CITED-D. San José, 1992. p. 15-22.
Moreira Márquez HL, Vargas L, Ribeiro PR, Zimmermann S. Fundamentos da moderna aqüicultura. Canoas: Ed. ULBRA (Bra). 2001.Nelson WO, Campbell PGC. Review of the effects of acidifi cation the geochemical of Al, Cd, Pb and Hg in freshwater environments. Environ Pollut 1991; 71:91-130. DOI: https://doi.org/10.1016/0269-7491(91)90030-Z
Neville CM. Physiological response of juvenile rainbow trout Salmo gairdneri, to acid and aluminum prediction of fi eld responses from laboratory data. Can. J Fish Aquat Sci 1985; 42:2004-2019. DOI: https://doi.org/10.1139/f85-248
NRS-SBCS. COMISSÃO DE FERTILIDADE DO SOLO. Recomendações de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina. Passo Fundo: 1995.Payan P, Girard JP. Branquial ion movements in teleosts: the roles of respiratory and chloride cells. In Fish Physiology Vol XB, Hoar WS, Randall DL Edis. 1984.
Playle RC, Goss GG, Wood CM. Physiological disturbances in rainbow trout (Salmo gairdneri)during acid and aluminum exposures in soft water of two calcium concentrations. Can J Zool 1988; 67:314-324. DOI: https://doi.org/10.1139/z89-046
Potts WTW. Kinetics of sodium uptake in freshwater animals: a comparison of ion exchange and proton pumphypothesis. Am J PhysiolBethesda. 1994; 226:315-320. DOI: https://doi.org/10.1152/ajpregu.1994.266.2.R315
Rattner BA, Heath AG. Factors affecting contaminant toxicity in aquatic and terrestrial vertebrates. In: Handbook of Ecotoxicology. Hoffman DJ, Rattner BA, Burton AG, Cairns J. Eds., Lewis Publishers, Boca Raton, Fl. 1994.
Singh VP. Kinetics of acidifi cation during drying and inundation of acid sulfate soil material. Implications for the management of brackishwater fi sh ponds. In: H. Dost (Editor). Proc Int. Sym Acid Sulfate Soils; Publication 31. International Institute for land Reclamation and Improvement. Bangkok, Thailand. 1981 pp. 33I-351.
Staurnes M, Sigholt T, Reite OB. Reduced carbonic anhydrasa and Na-K-ATPase activity in gills of salmonids exposed to aluminum-containing acid water. Experientia 1984; 40:226-234. DOI: https://doi.org/10.1007/BF01963613
Tacon A. Nutrición y alimentación de peces y camarones cultivados. Manual de Capacitación- GCP/RLA/102/ITA. Proyecto Aquila II. Documento de Campo N° 4. FAO, Brasilia, Brasil; 1989
.Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environmental Pollution 121 (2003) 307-320. DOI: https://doi.org/10.1016/S0269-7491(02)00270-1
Vinatea L. Principios químicos de qualidade da água para peixes e camarões. UFSC, Florianópolis; 2004.Wangsongsak A, Utarpongsa S, Kruatrachue M, Ponglikitmonkol M, Pokethitiyook P, Sumranwanich T. alterations of organ histopathology and metallothionein mRNA expression in Siver barb, Puntius gonionotus during subchrinic cadmium exposure. J Environ Sci, 2007; 19:1341-1348. DOI: https://doi.org/10.1016/S1001-0742(07)60219-8
Weatherley AH, Lake PS, Stahal PL. Zinc pollution and ecology of the environment. In: Nriagu JO, ed. Zinc in the environment. Part 1: Ecological cycling. New York, NY: John Wiley; 1988. p. 337-417.
Wedemeyer GA. Physiology of Fish Intensive Culture Systems. Chapman and Hall, New York; 1996. 231p.Wendelaar Bonga SE. The stress response in fi sh. Physiol Rev 1997; 77: 591-625. DOI: https://doi.org/10.1152/physrev.1997.77.3.591
Wood CM. Flux measurements as indices of H+ and metal effects on freshwater fi sh. Aquatic Toxicol 1992; 22:239-253Wood CM. Toxic responses of the gill. In: Schlenk DS, Benson WH. (Eds.), Target Organ Toxicity in Marine and Freshwater Teleosts, vol. 1. Taylor and Francis, London; 2001. pp. 1-89. DOI: https://doi.org/10.1201/9781315109244-1
Zaions MI, Baldisseroto B. Na+ and K+ body levels and survival of fi ngerlings of Rhamdia quelen (Siluriformes, Pimelodidae) exposed to acute changes of water pH. Ciência Rural 2000; 30:1041-1045. DOI: https://doi.org/10.1590/S0103-84782000000600020
Zaniboni-Filho E, Meurer S, Golombieski J I, Silva L V F, Baldisserotto B. Survival of Prochilodus lineatus (Valenciennes) fi ngerlings exposed to acute pH changes. Acta Scientiarum Maringá 2002; 24:917-920. DOI: https://doi.org/10.4025/actascianimsci.v24i0.2345
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2016 Revista Colombiana de Ciencias Pecuarias

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam a RCCP a reimprimir o material nela publicado.
A revista permite que o(s) autor(es) detenham os direitos autorais sem restrições, e permitirá que o(s) autor(es) mantenham os direitos de publicação sem restrições.