Esta é uma versão desatualizada publicada em 2024-10-24. Leia a versão mais recente.

Caracterização e resistência antimicrobiana de Moraxella ovis isolados de casos clínicos de ceratoconjuntivite contagiosa ovina no Estado do México, México

Autores

  • Giovany Ortiz-Arana Universidad Autónoma del Estado de México
  • Martín Talavera-Rojas Universidad Autónoma del Estado de México
  • Edgardo Soriano-Vargas Universidad Autónoma del Estado de México
  • Erika Gabriela Palomares-Reséndiz Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias
  • Edgar Enríquez-Gómez Universidad Autónoma del Estado de México
  • Celene Salgado-Miranda Universidad Autónoma del Estado de México
  • Jorge Acosta-Dibarrat Universidad Autónoma del Estado de México

DOI:

https://doi.org/10.17533/udea.rccp.v37n1a4

Palavras-chave:

cabra, genes de resistência, Moraxella spp., multirresistência, ovelha, ceratoconjuntivite contagiosa ovina, resistência antimicrobiana, vigilância epidemiológica

Resumo

Antecedentes: A ceratoconjuntivite contagiosa ovina (OKC) é uma doença infeccioso contagioso que causa cegueira temporária ou permanente em ovinos e caprinos, esta doença está associada a um conjunto de gêneros bacterianos dos quais alguns deles relataram resistência antimicrobiana. Objetivo: O objetivo deste estudo foi identificar a relação fenotípica-genotípica da resistência antimicrobiana de Moraxella spp. isolados obtidos de casos clínicos de ceratoconjuntivite contagiosa ovina (OKC) no estado do México. Métodos: Um total de 209 amostras foram obtidas de casos clínicos de OKC em ovinos.e obtidos e 60 isolados de Moraxella ovis foram identificados por técnicas bacteriológicas e amplificação dos genes 16s rRNA e rtxA por PCR. Todos os isolados foram avaliados quanto à resistência antimicrobiana pelo método de teste de suscetibilidade à difusão em disco e pela amplificação de genes de resistência por PCR respectivamente. Resultados: Determinamos 14 isolados de Moraxella ovis com resistência antimicrobiana (AMR) e cinco multirresistentes (MDR) e amplificou os genes de resistência antimicrobiana sul1, sul2, tetB, qnrA, qnrB, BlaTEM e não amplificou o gene floR. Conclusão: É o primeiro relato de isolamento de Moraxella. ovis em lesões oculares em ovinos no Estado do México e a identificação de seis genes de resistência antimicrobiana. Sugere-se que Moraxella ovis. desempenha um papel importante no curso da doença e fornece um panorama de interesse em vigilância epidemiológica molecular e resistência bacteriana.

|Resumo
= 443 veces | PDF (ENGLISH)
= 21 veces| | HTML (ENGLISH)
= 0 veces|

Downloads

Não há dados estatísticos.

Biografia do Autor

Giovany Ortiz-Arana, Universidad Autónoma del Estado de México

Centro de Investigación y Estudios Avanzados en Salud Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México, México
https://orcid.org/0000-0003-1614-6613

Martín Talavera-Rojas, Universidad Autónoma del Estado de México

Centro de Investigación y Estudios Avanzados en Salud Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México, México
https://orcid.org/0000-0003-0908-985X

Edgardo Soriano-Vargas, Universidad Autónoma del Estado de México

Centro de Investigación y Estudios Avanzados en Salud Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México, México
https://orcid.org/0000-0002-1514-1741

Erika Gabriela Palomares-Reséndiz, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Centro Nacional de Investigación Disciplinaria Salud Animal e Inocuidad Ciudad de México, México
https://orcid.org/0000-0001-5561-338X

Edgar Enríquez-Gómez, Universidad Autónoma del Estado de México

Centro de Investigación y Estudios Avanzados en Salud Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México, México
https://orcid.org/0000-0003-1614-6613

Celene Salgado-Miranda, Universidad Autónoma del Estado de México

Centro de Investigación y Estudios Avanzados en Salud Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México, México
https://orcid.org/0000-0001-8014-241X

Jorge Acosta-Dibarrat, Universidad Autónoma del Estado de México

Centro de Investigación y Estudios Avanzados en Salud Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México, México
https://orcid.org/0000-0003-2901-4740

Referências

Aguilar-Montes de Oca S, Talavera-Rojas M, Soriano-Vargas E, Barba-León J, Vazquez-Navarrete J. Determination of extended spectrum β -lactamases/AmpC β-lactamases and plasmid-mediated quinolone resistance in Escherichia coli isolates obtained from bovine carcasses in Mexico. Trop Anim Health Prod 2015; 47:975–981. https://doi.org/10.1007/s11250-015-0818-3

Akerstedt J, Hofshagen M. Bacteriological investigation of infectious keratoconjunctivitis in Norwegian sheep. Acta Vet Scand 2004; 45:19–26. https://doi.org/10.1186/1751-0147-45-19

Alexander D. Infectious bovine keratoconjunctivitis: A review of cases in clinical practice. Vet Clin North Am - Food Anim Pract 2010; 26(3):487–503. https://doi.org/10.1016/j.cvfa.2010.09.006

Angelos JA, Ball LM. Differentiation of Moraxella bovoculi sp. nov. from other coccoid Moraxellae by the use of polymerase chain reaction and restriction endonuclease analysis of amplified DNA. J Vet Diagn Invest 2007; 19(5):532–534. https://doi.org/10.1177/104063870701900511

Angelos JA, Ball LM, Byrne BA. Minimum inhibitory concentrations of selected antimicrobial agents for Moraxella bovoculi associated with infectious bovine keratoconjunctivitis. J Vet Diagn Invest 2011; 23(3):552–555. https://doi.org/10.1177/1040638711404154

Angelos JA, Hess JF, George LW. An RTX operon in hemolytic Moraxella bovis is absent from nonhemolytic strains. Vet Microbiol 2003; 92(4):363–377. https://doi.org/10.1016/S0378-1135(02)00410-8

Angelos JA, Spinks PO, Ball LM, George LW. Moraxella bovoculi sp. nov., isolated from calves with infectious bovine keratoconjunctivitis. Int J Syst Evol Microbiol 2007; 57(4): 789–795. https://doi.org/10.1099/ijs.0.64333-0

Bush K, Jacoby GA. Updated functional classification of β-Lactamases. Antimicrob Agents Chemother 2010; 54(3):969–976. https://doi.org/10.1128/AAC.01009-09

Catry B, Boyen F, Baele M, Dewulf J, de Kruif A, Vaneechoutte M, Haesebrouck F, Decostere A. Recovery of Moraxella ovis from the bovine respiratory tract and differentiation of Moraxella species by tDNA-intergenic spacer PCR. Vet Microbiol 2007; 120(3-4):375–380. https://doi.org/10.1016/j.vetmic.2006.10.037

Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 2007; 60(2):394–397. https://doi.org/10.1093/jac/dkm204

Chiu CH, Su LH, Chu CH, Wang MH, Yeh CM, Weill FX, Chu C. Detection of multidrug-resistant Salmonella enterica serovar typhimurium phage types DT102, DT104, and U302 by multiplex PCR. J Clin Microbiol 2006; 44(7):2354-2358. https://doi.org/10.1128/JCM.00171-06

Clinical and Laboratory Standards Institute (CLSI). Antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved Standard - 4 edition. CLSI document VET01-A4. 2013. Wayne, PA.1-72.

Clinical and Laboratory Standard Institute (CLSI). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; Approved Guideline- 3 Edition. CLSI document M45. 2016. Wayne, PA. 1-90.

Dagnall GJR. An investigation of colonization of the conjunctival sac of sheep by bacteria and mycoplasmas. Epidemiol Infect 1994a; 112(3):561–567. https://doi.org/10.1017/S0950268800051268

Dagnall GJR. The role of Branhamella ovis, Mycoplasma conjunctivae and Chlamydia psittaci in conjunctivitis of sheep. Br Vet J 1994b; 150(1):65–71. https://doi.org/10.1016/S0007-1935(05)80097-1

Dallenne C, da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65(3):490–495. https://doi.org/10.1093/jac/dkp498

Dickey AM, Loy JD, Bono JL, Smith TPL, Apley MD, Lubbers BV, Dedonder KD, Capik SF, Larsn RL, White BJ, Blom J, Chitko-McKown CG, Clawson ML. Large genomic differences between Moraxella bovoculi isolates acquired from the eyes of cattle with infectious bovine keratoconjunctivitis versus the deep nasopharynx of asymptomatic cattle. Vet Res 2016; 47:31(2016). https://doi.org/10.1186/s13567-016-0316-2

Dickey AM, Schuller G, Loy JD, Clawson ML. Whole genome sequencing of Moraxella bovoculi reveals high genetic diversity and evidence for interspecies recombination at multiple loci. PLoS One 2018; 13(12):e0209113. https://doi.org/10.1371/journal.pone.0209113

Elad D, Yeruham I, Bernstein M. Moraxella ovis in cases of infectious bovine keratoconjunctivitis (IBK) in Israel J Vet Med Ser B 1988; 35(1-10):431–434. https://doi.org/10.1111/j.1439-0450.1988.tb00516.x

Egwu GO, Faull WB, Bradbury JM, Clarkson MJ. Ovine infectious keratoconjunctivitis: a microbiological study of clinically unaffected and affected sheep´s eyes with special reference to Mycocoplasma conjunctivae. Vet Rec 1989; 125(10):253–256. https://doi.org/10.1136/vr.125.10.253

Farias LDA, Maboni G, Matter LB, Scherer CFC, Libardoni F, de Vargas AC. Phylogenetic analysis and genetic diversity of 3’ region of rtxA gene from geographically diverse strains of Moraxella bovis, Moraxella bovoculi and Moraxella ovis. Vet Microbiol 2015; 178(3-4):283–287. https://doi.org/10.1016/j.vetmic.2015.05.025

Feizabadi MM, Delfani S, Raji N, Manjooni A, Aligholi M, Shahcheraghi F, Parvin M, Yadegarinia D. Distribution of blaTEM, blaSHV, blaCTX-M Genes Amoung clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital,Tehran,Iran. Microb Drug Resist 2010; 16(1):49–53. https://doi.org/10.1089/mdr.2009.0096

Gnida A, Kunda K, Ziembińska A, Łuczkiewicz A, Felis E, Surmacz-Górska J. Detection of sulfonamide resistance genes via in situ PCR-FISH. Polish J Microbiol 2014; 63(2):167–173.

Gokce HI, Citil M, Genc O, Erdogan HM, Gunes V, Kankavi O. A comparision of the efficacy of florfenicol and oxitetracycline in treatment of naturally ocurring infectious bovine keratoconjuntivitis. Ir Vet J 2002; 55(11):573–576.

Gong J, Zhuang L, Zhang D, Zhang P, Dou X, Wang C. Establishment of a multiplex loop-mediated isothermal amplification method for rapid detection of sulfonamide (sul1, sul2, sul3) in clinical Enterobacteriaceae isolates from poultry. Foodborne Pathog Dis 2018; 15(7):413–419. https://doi.org/10.1089/fpd.2017.2410

Gupta S, Chahota R, Bhardwaj B, Malik P, Verma S, Sharma M. Identification of Chlamydiae and Mycoplasma species in ruminants with ocular infections. Lett Appl Microbiol 2014; 60(2):135–139. https://doi.org/10.1111/lam.12362

Ho PL, Wong RC, Chow KH, Que TL. Distribution of integron-associated trimethoprim-sulfamethoxazole resistance determinants among Escherichia coli from humans and food-producing animals. Lett Appl Microbiol 2009; 49(5):627–634. https://doi.org/10.1111/j.1472-765X.2009.02717.x

Hu L, Chang X, Ye, Y, Wang Z, Shao Y, Shi W, Li X, Li J. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int J Antimicrob Agents 2011; 37(3):230–234. https://doi.org/10.1016/j.ijantimicag.2010.10.025

Infante B, Grape M, Larsson M, Kristiansson C, Pallecchi L, Rossolini GM, Kronvall G. Acquired sulphonamide resistance genes in faecal Escherichia coli from healthy children in Bolivia and Peru. Int J Antimicrob Agents 2005; 25(4):308–312. https://doi.org/10.1016/j.ijantimicag.2004.12.004

Jacoby G, Cattoir V, Hooper D, Martínez-Martínez L, Nordmann P, Pascual A, Poirel L, Wang M. Qnr gene nomenclature. Antimicrob Agents Chemother 2008; 52(7):2297–2299. https://doi.org/10.1128/AAC.00147-08

Jaramillo CJ. Epidemiologia Veterinaria. 1 ed (Mexico) Manual Moderno 2009.

Jelocnik M, Laurence M, Murdoch FR, Polkinghorne A. Detection of Chlamydiaceae in ocular swabs from Australian pre-export feedlot sheep. Aust Vet J 2019(10); 97: 1–3. https://doi.org/10.1111/avj.12857

Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, Li L. Plasmid-mediated quinolone resistance determinants qnr and aac(60)- Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother 2008; 61(5): 1003 –1006. https://doi.org/10.1093/jac/dkn063

Karthik K, Manimaran K, Mahaprabhu R, Shoba K. Isolation of Moraxella sp. from cases of keratoconjunctivitis in an organized sheep farm of India. Open J Vet Med 2017; 7(10); 138–143. https://doi.org/10.4236/ojvm.2017.710014

Kerrn MB, Klemmensen T, Frimodt-Møller N, Espersen F. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J Antimicrob Chemother 2002; 50(4): 513–516. https://doi.org/10.1093/jac/dkf164

Kraychete GB, Botelho LAB, Campana EH, Picão RC, Bonelli RR. Updated multiplex PCR for detection of all six plasmid-mediated qnr gene families. Antimicrob Agents Chemother 2016; 60(12): 7524–7526. https://doi.org/10.1128/AAC.01447-16

Libardoni F, Scherer CFC, Farias L, Vielmo A, Balzan C, Vargas AC. Moraxella bovoculi em casos de ceratoconjuntivite infecciosa bovina no Rio Grande do Sul. Pesqui Vet Bras 2012; 32(8):743–746. https://doi.org/10.1590/S0100-736X2012000800011

Loy JD, Brodersen BW. Moraxella spp. isolated from field outbreaks of infectious bovine keratoconjunctivitis: a retrospective study of case submissions from 2010 to 2013. J Vet Diagnostic Investig 2014; 26(6):761–768. https://doi.org/10.1177/1040638714551403

Lüthje P, Schwarz S. Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular reference to macrolide–lincosamide resistance phenotypes and genotypes. J Antimicrob Chemother 2006; 57(5):966–969. https://doi.org/10.1093/jac/dkl061

Maboni G, Gressler LT, Espindola JP, Schwab M, Tasca C, Potter L, de Vargas AC. Differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis. Brazilian J Microbiol 2015; 46:545–549. https://doi.org/10.1590/S1517-838246220140058

Maka L, Mackiw E, Scienzynska H, Modezelewska M, Popowska M. Resistance to sulfonamides and dissemination of sul genes among Salmonella spp. isolated from food in Poland. Foodborne Pathog Dis 2015; 12(5):383–389. https://doi.org/10.1089/fpd.2014.1825

Martí S, Fernández-Cuenca, F, Pascual Á, Ribera A, Rodríguez-Baño J, Bou G, Cisneros, JM, Pachón J, Martínez-Martínez L, Vila J. Prevalencia de los genes tetA y tetB como mecanismo de resistencia a tetraciclina y minociclina en aislamientos clínicos de Acinetobacter baumannii. Enferm. Infecc Microbiol Clin 2006; 24(2):77–80. https://doi.org/10.1157/13085012

Medina A, Horcajo P, Jurado S, de la Fuente R, Ruiz-Santana-Quinteira JA, Dominguez-Bernal G, Orden JA. Phenotypic and genotypic characterization of antimicrobial resistance in enterohemorrhagic Escherichia coli and atypical enteropathogenic E. coli strains from ruminants. J Vet Diagn Invest 2011; 23(1):91–95. https://doi.org/10.1177/104063871102300114

Memariani M, Najar-peerayeh S, Salehi TZ, Khalil S. Occurrence of SHV, TEM and CTX-M β-Lactamase genes among enteropathogenic Escherichia coli strains isolated from children with diarrhea. Jundishapur J Microbiol 2015; 8(4):e15620. https://doi.org/10.5812/jjm.8(4)2015.15620

Mirzaagha P, Louie M, Sharma R, Yanke LJ, Topp E, McAllister TA. Distribution and characterization of ampicillin- and tetracycline-resistant Escherichia coli from feedlot cattle fed subtherapeutic antimicrobials. BMC Microbiol 2011; 11:78(2011). https://doi.org/10.1186/1471-2180-11-78

Mosquito S, Ruiz J, Bauer JL, Ochoa TJ. Molecular mechanisms of antibiotic resistance in, associated diarrhea Rev Peru. Med. Exp. Salud Publica 2011; 28(4):648–656. https://doi.org/10.17843/rpmesp.2011.284.430

Murray A, Mather H, Coia JE, Brown DJ. Plasmid-mediated quinolone resistance in nalidixic-acid-susceptible strains of Salmonella enterica isolated in Scotland. J Antimicrob Chemother 2008; 62(5):1153–1155. https://doi.org/10.1093/jac/dkn340

O’Connor AM, Shen HG, Wang C, Opriessnig T. Descriptive epidemiology of Moraxella bovis, Moraxella bovoculi and Moraxella ovis in beef calves with naturally occurring infectious bovine keratoconjunctivitis (Pinkeye). Vet Microbiol 2012; 155(2-4):374–380. https://doi.org/10.1016/j.vetmic.2011.09.011

Park Y, Yu JK, Lee S, Oh E, Woo G. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J Antimicrob Chemother 2007; 60(4):868–871. https://doi.org/10.1093/jac/dkm266

Peymani A, Naserpour-Farivar T, Zare E, Azarhoosh KH. Distribution of blaTEM, bla SHV, and bla CTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. J Prev Med Hyg 2017; 58(2):155–160.

Roberts MC, Smith AL.Molecular Characterization of “Plasmid-Free” Antibiotic resistant Haemophilus influenzae. J Bacteriol 1980; 144(1):476-479. https://doi.org/10.1128/jb.144.1.476-479.1980

Roberts MC, Pang Y, Spencer RC, Winstanley TG, Brown BA, Wallace RJ. Tetracycline resistance in Moraxella (Branhamella) catarrhalis: Demonstration of two clonal outbreaks by using pulsed-field gel electrophoresis. Antimicrob Agents Chemother 1991; 35(11):2453–2455. https://doi.org/10.1128/AAC.35.11.2453

Roberts MC, Chung WO, Roe DE. Characterization of Tetracycline and Erythromycin resistance determinants in Treponema denticola. Antimicrob Agents Chemother 1996; 40(7):1690–1694. https://doi.org/10.1128/AAC.40.7.1690

Rodríguez-Martínez JM, Pascua A, García I, Martínez-Martínez L. Detection of the plasmid-mediated quinolone resistance determinant qnr among clinical isolates of Klebsiella pneumoniae producing AmpC-type β-lactamase. J Antimicrob Chemother 2003; 52:703–706. https://doi.org/10.1093/jac/dkg388

Roe DE, Braham PH, Weinberg A, Roberts MC. Characterization of tetracycline resistance in Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 1995; 10(4): 227–232. https://doi.org/10.1111/j.1399-302X.1995.tb00147.x

Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2004(5); 28:519–542. https://doi.org/10.1016/j.femsre.2004.04.001

Shen HG, Gould S, Kinyon J, Opriessnig T, O’Connor AM. Development and evaluation of a multiplex real-time PCR assay for the detection and differentiation of Moraxella bovis, Moraxella bovoculi and Moraxella ovis in pure culture isolates and lacrimal swabs collected from conventionally raised cattle. J Appl Microbiol 2011; 111(5):1037–1043. https://doi.org/10.1111/j.1365-2672.2011.05123.x

Sosa V, Zunino P. Diversity of Moraxella spp. strains recovered from infectious bovine keratoconjunctivitis cases in Uruguay. J Infect Dev Ctries 2013; 7(11):819–824. https://doi.org/10.3855/jidc.3458

Talavera-González JM, Acosta-Dibarrat J, Reyes-Rodríguez NE; Salgado-Miranda C, Talavera-Rojas M. Prevalence of the qnrB, qnrA and blaTEM genes in temperate bacteriophages of Escherichia coli isolated from wastewater and sewer water from slaughterhouses in the State of Mexico. Rev Mex Cienc Pecu 2021; 12(1):298–305. https://doi.org/10.22319/rmcp.v12i1.5378

Touati A, Brasme L, Benallaoua S, Gharout A, Madoux J, De Champs C. First report of qnrB-producing Enterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered from Algerian hospitals. Diagn Microbiol Infect Dis 2008; 60(3):287–290. https://doi.org/10.1016/j.diagmicrobio.2007.10.002

Wang M, Tran J, Jacoby G. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother 2003; 47(7):2242–2248. https://doi.org/10.1128/AAC.47.7.2242-2248.2003

Wu J, Ko W, Tsai S, Yan J. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese Hospital. Antimicrob Agents Chemother 2007; 51(4):1223–1227. https://doi.org/10.1128/AAC.01195-06

Downloads

Publicado

2023-08-14 — Atualizado em 2024-10-24

Versões

Como Citar

Ortiz-Arana, G., Talavera-Rojas, M., Soriano-Vargas, E., Palomares-Reséndiz, E. G., Enríquez-Gómez, E., Salgado-Miranda, C., & Acosta-Dibarrat, J. (2024). Caracterização e resistência antimicrobiana de Moraxella ovis isolados de casos clínicos de ceratoconjuntivite contagiosa ovina no Estado do México, México. Revista Colombiana De Ciencias Pecuarias, 37(1), 14–26. https://doi.org/10.17533/udea.rccp.v37n1a4 (Original work published 14º de agosto de 2023)

Edição

Seção

Original research articles