This is an outdated version published on 11-12-2020. Read the most recent version.

Electronic Nose, Tongue and Eye: Their Usefulness for the Food Industry

Authors

  • Roberto Ordoñez-Araque Universidad de las Americas. Universidad Iberoamericana del Ecuador https://orcid.org/0000-0003-2381-9003
  • Johnny Rodríguez-Villacres Universidad Agraria del Ecuador
  • Julio Urresto-Villegas Universidad Agraria del Ecuador

DOI:

https://doi.org/10.17533/udea.vitae.v27n3a01

Keywords:

electronic senses, volatile compounds, food technology, sensory analysis, quality control

Abstract

Background: The electronic nose, tongue, and eye are futuristic technologies that have been used for many years; they have been gaining market in different types of industries and can increasingly be found in the food area; their function is to determine sensory characteristics (smell, aroma, and flavor) and objective visuals, without the subjectivity that can be represented by sensory analysis by people (the study that can complement the analysis of machines, without being exclusive). Objectives: Find the main generalities of these mechanisms, their sensors, software, mechanism of action, and applications within the food industry. Methods: A search was carried out in the main databases of indexed articles, with terms that allowed collecting the necessary information, and 89 articles were used that met different inclusion criteria. Results: The main outcomes were to understand the operation of each of these technologies, what their main components are, and how they can be linked in the beer, wine, oil, fruit, vegetable, dairy, etc. industry to determine their quality, safety, and fraud. Conclusions: The use of electronic nose, tongue, and eye is found in more food industries every day. Its technology continues to evolve; the future of sensory analysis will undoubtedly apply these mechanisms due to the reliability, speed, and reproducibility of the results.

|Abstract
= 1368 veces | PDF
= 698 veces| | HTML
= 30 veces|

Downloads

Download data is not yet available.

Author Biographies

Roberto Ordoñez-Araque, Universidad de las Americas. Universidad Iberoamericana del Ecuador

School of Nutrition and Dietetics. Faculty of Health and Wellbeing

Johnny Rodríguez-Villacres, Universidad Agraria del Ecuador

Agricultural engineering. Faculty of Agricultural Sciences.

Julio Urresto-Villegas, Universidad Agraria del Ecuador

Agricultural engineering. Faculty of Agricultural Sciences.

References

Dumitru LM, Irimia-Vladu M, Sariciftci NS. Biocompatible Integration of Electronics Into Food Sensors. In: Comprehensive Analytical Chemistry. Elsevier B.V.; 2016. 74:247-271p. DOI: https://doi.org/10.1016/bs.coac.2016.04.009

Méndez Pérez R, Cheein FA, Rosell-Polo JR. Flexible system of multiple RGB-D sensors for measuring and classifying fruits in agri-food Industry. Comput Electron Agric. Jun. 2017;139:231- 42. DOI: https://doi.org/10.1016/j.compag.2017.05.014

Ordoñez-Araque R, Narváez-Aldáz C. Changes in the psysicalchemical composition, total polyphenols and antioxidant activity of fresh celery (Apium graveolens L.) dehydrated by hot air and by lyophilization. AgriScientia. Dec. 2019 24;36(2):57-65. DOI: https://doi.org/10.31047/1668.298x.v36.n2.24036

Handa P, Singh B. Importance of Electronics in Food Industry. IOSR J Electron Commun Eng. 2018;13(2):15-22. DOI: https:// doi.org/10.9790/2834-1302021522

Rodríguez Méndez ML. Electronic Noses and Tongues in Food Science. Electronic Noses and Tongues in Food Science. Elsevier Inc.; 2016. DOI: https://doi.org/10.1016/C2013-0-14449-2

Baldwin EA, Bai J, Plotto A, Dea S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors. May. 2011;11(5):4744-66. DOI: https://doi.org/10.3390/s110504744

Xu M, Wang J, Zhu L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. Aug. 2019 15; 289:482-9. DOI: https://doi.org/10.1016/j.foodchem.2019.03.080

Buratti S, Malegori C, Benedetti S, Oliveri P, Giovanelli G. E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach. Talanta. May. 2018 15;182:131-41. DOI: https://doi.org/10.1016/j.talanta.2018.01.096

Shi H, Zhang M, Adhikari B. Advances of electronic nose and its application in fresh foods: A review. Vol. 58, Critical Reviews in Food Science and Nutrition. 2018. 2700-2710 p. DOI: https://doi.org/10.1080/10408398.2017.1327419

Cipriano D, Capelli L. Evolution of electronic noses from research objects to engineered environmental odour monitoring systems: A review of standardization approaches. Biosensors. 2019; 9(2):2-19. DOI: https://doi.org/10.3390/bios9020075

Durán-Acevedo C, Gualdron-Guerrero O, Hernández-Ordoñez M. Nariz electrónica para determinar el índice de madurez del tomate de árbol (Cyphomandra Betacea Sendt). Ing Investig y Tecnol. 2014 Jul 1; 15(3):351-62. DOI: https://doi.org/10.1016/s1405-7743(14)70346-4

Valera J, Togores B, Cosio B. Utilidad de la nariz electrónica para el diagnóstico de enfermedades de la vía respiratoria. Arch Bronconeumol. Jun. 2012 1; 48(6):187-8. DOI: https://doi.org/10.1016/j.arbres.2011.08.004

Chatterjee A, Abraham J. Microbial Contamination, Prevention, and Early Detection in Food Industry. Microbial Contamination and Food Degradation. Elsevier Inc.; 2018. 23-62 p. DO: https://doi.org/10.1016/B978-0-12-811515-2/00002-0

Deshmukh S, Bandyopadhyay R, Bhat tachar y ya N. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring - An overview. Talanta. 2015;144(7):329-40. DOI: https://doi.org/10.1016/j.talanta.2015.06.050

Zhong Y. Electronic nose for food sensory evaluation. Evaluation Technologies for Food Quality. Elsevier Inc.; 2019. 7-22p. DOI: https://doi.org/10.1016/B978-0-12-814217-2.00002-0

Apetrei C, Bounegru A. Electronic Noses and Traceability of Foods. In: Reference Module in Food Science. Elsevier; 2020. p. 1–18. DOI: https://doi.org/10.1016/b978-0-08-100596-5.22852-7

Farraia M, Cavaleiro J, Paciência I. The electronic nose technology in clinical diagnosis. Porto Biomed J. 2019;4(4):2–10. DOI: https://doi.org/10.1097/j.pbj.0000000000000042

Paredes Doig A, Sun Kou MDR, Picasso G. Implementación y evaluación de una nariz electrónica para la detección de alcoholes lineales. Rev Colomb Química. 2016;45(2):12. DOI: https://doi.org/10.15446/rev.colomb.quim.v45n2.60393

Szulczyński B, Rybarczyk P, Gębicki J. Monitoring of n-butanol vapors biofiltration process using an electronic nose combined with calibration models. Monatshefte fur Chemie. 2018;149(9):1693-9. DOI: https://doi.org/10.1007/s00706-018-2243-6

Wang Z, Sun X, Miao J. Conformal prediction based on K-nearest neighbors for discrimination of ginsengs by a home-made electronic nose. Sensors (Switzerland). 2017;17(8):1869. DOI: https://doi.org/10.3390/s17081869

Estakhroyeh H, Rashedi E, Mehran M. Design and Construction of Electronic Nose for Multi-purpose Applications by Sensor Array Arrangement Using IBGSA. J Intell Robot Syst Theory Appl. 2018;92(2):205-21. DOI: https://doi.org/10.1007/s10846-017-0759-3

Mirshahi M, Partovi V, Adjengue L. Automatic odor prediction for electronic nose. J Appl Stat. 2018;45(15):2788-99. DOI: https://doi.org/10.1080/02664763.2018.1441382

Cuypers W, Lieberzeit PA. Combining two selection principles: Sensor arrays based on both biomimetic recognition and chemometrics. Front Chem. 2018;6(6):1-10. DOI: https://doi.org/10.3389/fchem.2018.00268

Wilson AD, Baietto M. Applications and advances in electronicnose technologies. Sensors. 2016;9(7):5099-148. DOI: https://doi.org/10.3390/s90705099

Tan J, Xu J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif Intell Agric. 2020;4(1):104-15. DOI: https://doi.org/10.1016/j.aiia.2020.06.003

Van de Goor R, van Hooren M, Dingemans A. Training and Validating a Portable Electronic Nose for Lung Cancer Screening. J Thorac Oncol. 2018;13(5):676-81. DOI: https://doi.org/10.1016/j.jtho.2018.01.024

Liao YH, Shih C, Abbod M. Development of an E-nose system using machine learning methods to predict ventilator-associated pneumonia. Microsyst Technol. 2020;1(1):1-20. DOI: https://doi.org/10.1007/s00542-020-04782-0

Bin Abu Bakar M, Bin Abdullah A, Bin Ahmad Sa’ad F. Development of application specif ic electronic nose for monitoring the atmospheric hazards in confined space. Adv Sci Technol Eng Syst. 2019;4(1):200-16. DOI: https://doi.org/10.25046/aj040120

Mirzaee E, Taheri A, Ayari F, Lozano J. Identification of Fresh-Chilled and Frozen-Thawed Chicken Meat and Estimation of their Shelf Life Using an E-Nose Machine Coupled Fuzzy KNN. Food Anal Methods. 2019;13(3):678-89. DOI: https://doi.org/10.1007/s12161-019-01682-6

López P, Triviño R, Calderón D. Electronic nose prototype for explosive detection. Chil Conf Electr Electron Eng Inf Commun Technol. 2017;5(3):1-4. DOI: https://doi.org/10.1109/CHILECON.2017.8229657

Górska-Horczyczak E, Guzek D, Molęda Z. Applications of electronic noses in meat analysis. Food Sci Technol. 2016;36(3):389-95. DOI: https://doi.org /10.1590/1678-457X.03615

Zhiyi H, Chenchao H, Jiajia Z. Electronic nose system fabrication and application in large yellow croaker (Pseudosciaena crocea) fressness prediction. J Food Meas Charact. 2016;11(1):33-40. DOI: https://doi.org/10.1007/s11694-016-9368-2

Baietto M, Wilson AD. Electronic-nose applications for fruit identification, ripeness and quality grading. Vol. 15, Sensors. 2015; 15(1): 899-931p. DOI: https://doi.org/10.3390/s150100899

Brezmes J, Llobet E. Electronic Noses for Monitoring the Quality of Fruit. Electronic Noses and Tongues in Food Science. Elsevier Inc.; 2016. 49-58p.

Gonzalez Viejo C, Fuentes S, Godbole A, Widdicombe B, Unnithan RR. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sensors Actuators, B Chem. 2019;308(45):1-121. DOI: https://doi.org/10.1016/j.snb.2020.127688

Jordan H, Mendes J, Farinelli M, Stevan S. A prototype to detect the alcohol content of beers based on an electronic nose. Sensors. 2019;19(11):1-14. DOI: https://doi.org/10.3390/s19112646

Balasubramanian S, Amamcharla J, Shin J. Possible Application of Electronic Nose Systems for Meat Safety: An Overview. Electronic Noses and Tongues in Food Science. Elsevier Inc.; 2016. 59-71p. DOI: https://doi.org/10.1016/B978-0-12-800243-8.00007-X

Wijaya DR, Sarno R, Daiva AF. Electronic nose for classifying beef and pork using Naïve Bayes. Int Semin Sensor, Instrumentation, Meas Metrol. 2017;10(4):104-8. DOI: https://doi.org/10.1109/ISSIMM.2017.8124272

Valente N, Rudnitskaya A, Oliveira JA. Cheeses made from raw and pasteurized cow’s milk analysed by an electronic nose and an electronic tongue. Sensors (Switzerland). 2018;18(8):1-15. DOI: https://doi.org/10.3390/s18082415

Tohidi M, Ghasemi-Varnamkhasti M, Ghafarinia V, Bonyadian M, Mohtasebi S. Development of a metal oxide semiconductorbased artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int Dairy J. 2018 Feb 1;77:38-46. DOI: https://doi.org/10.1016/j.idairyj.2017.09.003

Gancarz M, Wawrzyniak J, Gawrysiak-Witulska M. Electronic nose with polymer-composite sensors for monitoring fungal deterioration of stored rapeseed. Int Agrophysics. 2017;31(3):317- 5. DOI: https://doi.org/10.1515/intag-2016-0064

Udomkun P, Innawong B, Niruntasuk K. The feasibility of using an electronic nose to identify adulteration of Pathumthani 1 in Khaw Dok Mali 105 rice during storage. J Food Meas Charact. 2018;12(4):2515-23. DOI: https://doi.org/10.1007/s11694-018-9868-3

Bona E, Da Silva R. Coffee and the Electronic Nose. Electronic Noses and Tongues in Food Science. Elsevier Inc.; 2016. 31-38p. DOI: https://doi.org/10.1016/B978-0-12-800243-8.00004-4

Radi M, Rivai M, Purnomo M. Study on electronic-nose-based quality monitoring system for coffee under roasting. J Circuits, Syst Comput. 2016;25(10):1-19. DOI: https://doi.org/10.1142/S0218126616501164

Romani S, Rodriguez-Estrada M. Bakery Products and Electronic Nose. Electronic Noses and Tongues in Food Science. Elsevier Inc.; 2016. 39-47 p. DOI: https://doi.org/10.1016/B978-0-12-800243-8.00005-6

Rusinek R, Gancarz M, Nawrocka A. Application of an electronic nose with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. LWT. 2020 Jan 1;117:108665. DOI: https://doi.org/10.1016/j.lwt.2019.108665

Wei Z, Xiao X, Wang J. Identif ication of the rice wines with different marked ages by electronic nose coupled with smartphone and cloud storage platform. Sensors (Switzerland). 2017;17(11):1-13. DOI: https://doi.org/10.3390/s17112500

Kukade M, Karve T, Gharpure D. Identif ication and classification of spices by machine learning. Int Conf Intell Syst Green Technol. 2019;3(2):1-4. DOI: https://doi.org/10.1109/ICISGT44072.2019.00015

Hübert T, Tiebe C, Banach U. Electronic Noses for the Quality Control of Spices. Electronic Noses and Tongues in Food Science. Elsevier Inc.; 2016. 115-124p. DOI: https://doi.org/10.1016/B978-0-12-800243-8.00012-3

Di Rosa AR, Leone F, Cheli F, Chiofalo V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment–A review. J Food Eng. 2017;210:62-75. DOI: https://doi.org/10.1016/j.jfoodeng.2017.04.024

Downloads

Published

11-12-2020

Versions

How to Cite

Ordoñez-Araque, R., Rodríguez-Villacres, J. ., & Urresto-Villegas, J. . (2020). Electronic Nose, Tongue and Eye: Their Usefulness for the Food Industry. Vitae, 27(3). https://doi.org/10.17533/udea.vitae.v27n3a01

Issue

Section

Reviews