In-vitro effect of the methanolic extract of Momordica charantia on hatching of eggs of Haemonchus sp.
DOI:
https://doi.org/10.17533/udea.vitae.v28n1a345215Keywords:
haemonchosis, phytotherapy, sheep farmingAbstract
Background: Endoparasitism, particularly infections by gastrointestinal nematodes (e.g., Haemochus sp.), has been associated with economic losses within sheep production systems in tropical regions. Thus, implementing therapeutic alternatives that are environmentally sustainable is essential for parasite integral control programs. Objectives: Evaluate in-vitro the effect of Momordica charantia methanolic extract on the Haemonchus sp. eggs' hatching process. Methods: Nematode eggs were retrieved from experimentally infected sheep and exposed to 10, 20, 40, 80, and 160 mg/mL of methanolic extract of M. charantia. Hatching percentages were recorded from five replicates, and CL50 and CL90 were estimated through Probit regression analysis. Results: A significant effect on the hatching percentages were observed, from 24.2% up to 84.6% inhibition (p<0.05). The LC50 and LC90 estimated were 52.2 mg/mL (95%CI 37.87-63.22) and 201.45 mg/mL (95%CI 186.01-221.89), respectively. Utilizing a preliminary phytochemical analysis, potential antihelmintic compounds such as alkaloid, triterpenes, and anthracenic glycosides groups were identified in the methanolic extract. Conclusions: In the in-vitro test, the methanolic extract of M. charantia was effective in inhibiting the hatching of Haemonchus sp., which is important to promote other bio-guided fractionation studies of this plant on different life stages of H. contortus, this being a plant species widely adapted to the conditions of the piedmont (foothills) of Meta, Colombia.
Downloads
References
Drudge J, Szanto J, Wyant Z, Elam G. Field studies on parasite control in sheep: comparison of thiabendazole, ruelene, and phenothiazine. Am. J. Vet. Res [Internet]. 1964;25:1512–1518. Available from: https://www.scienceopen.com/document?vid=1571be24-967d-4592-b8fd-c9ae1d5196ec
Grisi L. O problema de parasitismo interno dos bovinos nos tropicos. Seminario internacional: Manejo y control de ecto y endoparásitos en ganado bovino, Convenio ICA-GTZ-Unisalle, Cartagena de Indias; 1993.
Agyei A. Seasonal changes in the level of infective strongylate nematodes larvae on pasture in the coastal savanna regions of Ghana. Vet. Parasitol. 1997;70:175–182. DOI: https://doi.org/10.1016/S0304-4017(96)01101-6
Marquéz D. Nuevas tendencias para el control de los parásitos de bovinos en Colombia. Corpoica. Bogotá D.C. 2003, 1–52p
Charlier J, Höglund J, Dorny P, von Samson-Himmelstjerna G, Vercruysse, J. Gastrointestinal nematode infections in adult dairy cattle: impact on production, diagnosis and control. Vet. Parasitol. 2009;164:70–79. DOI: https://doi.org/10.1016/j.vetpar.2009.04.012
O'Connor L, Walkden S, Kahn L. Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet. Parasitol. 2006;142:1–15. DOI: https://doi.org/10.1016/j.vetpar.2006.08.035
Ueno H, Gonçalves P. Manual para diagnóstico das helmintoses de ruminantes, fourth ed., Japan International Cooperation Agency, Tokyo; 1998.
Prichard R. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends Parasitol. 2001;17:445–453. DOI: https://doi.org/10.1016/s1471-4922(01)01983-3
Stromberg B, Gasbarre L. Gastrointestinal Nematode Control Programs with an Emphasis on Cattle. Vet Clin Food Anim. 2006;22:543–565. DOI: https://doi.org/10.1016/j.cvfa.2006.08.003
Silva B, Amarante M, Kadri S, Carrijo-Mauad J. Amarante A. Vertical migration of Haemonchus contortus third stage larvae on Brachiaria decumbens grass. Vet. Parasitol. 2008;158:85–92. DOI: https://doi.org/10.1016/j.vetpar.2008.08.009
Callinan A, Westcott J. Vertical distribution of trichostrongylid larvae on herbage and in soil. Int. J. Parasitol. 1986;16:241–244. DOI: https://doi.org/10.1016/0020-7519(86)90050-0
Silangwa S, Todd A. Vertical migration of Trichostrongylid larvae on grasses. J. Parasitol. 1964;50:278–285. DOI: https://doi.org/10.2307/3276286
Hoberg E, Lichtenfels J, Gibbons L. Phylogeny for species of Haemonchus (Nematoda: Trichostrongyloidea): considerations of their evolutionary history and global biogeography among Camelidae and Pecora (Artiodactyla). J. Parasitol. 2004;90:1085–1102. DOI: https://doi.org/10.1645/ge-3309
Rivera B, Parra D, García O, Aycardi E. Gastro-intestinal parasites in calves in Colombia. Tropical Animal Health and Production [Internet]. 1983;15:107-114. Available from: https://link.springer.com/article/10.1007/BF02239806
Pinilla J, Florez P, Sierra M, Morales E, Sierra R, Vásquez M, et al. Prevalencia del parasitismo gastrointestinal en bovinos del Departamento del Cesar, Colombia. Rev. Inv. Perú. 2018;29:278-287. DOI: http://dx.doi.org/10.15381/rivep.v29i1.14202
Tullner F, Roqueme L, Otte J. Investigaciones sobre la ocurrencia, epidemiología, e importancia económica de los helmintos en terneros en el departamento de Córdoba, Colombia, ICA-GTZ, Informe Técnico N° 10, Bogotá; 1993; 1–58p
Marquéz D, Jaramillo F, Romero A. Dinámica del parasitismo gastrointestinal en bovinos del hato de Tibaitata, Colombia. Revista de medicina Veterinaria y Zootecnia. Universidad Nacional de Colombia. 2000;47:49–56.
Herrera L, Ríos L, Zapata R. Frecuencia de la infección por nemátodos gastrointestinales en ovinos y caprinos de cinco municipios de Antioquia. Rev. MVZ Córdoba. 2013;18:3852–2860. DOI: https://doi.org/10.21897/rmvz.157
Marquéz D, García F, Jiménez G, Garzón C, Alarcón R, Basto G, et al. Diseño y estrategias para el control de ecto y endoparásitos del ganado en trópicos medio, bajo y de altura, de Cundinamarca y Boyacá. Informe Técnico Final Pronatta. Bogotá D.C. 2003.
Parra D, Uribe L. Epidemiología de nematodos del bovino en el pidedemonte de los Llanos Orientales de Colombia. Rev. ACOVEZ. 1993;14:16-25.
Lichtenfels J, Pilitt P, Hoberg E. New morphological characters for identifying individual specimens of Haemonchus spp. (Nematoda: Trichostrongyloidea) and a key to species in ruminants of North America. J. Parasitol. 1994;80:107–119. DOI: https://doi.org/10.2307/3283353
Cruz D, Rocha L, Arruda S, Palieraqui J, Cordeiro R, Santos Junior E, Molento M, et al. Anthelmintic efficacy and management practices in sheep farms from the state of Rio de Janeiro, Brazil. Vet. Parasitol. 2010;170:340–343. DOI: https://doi.org/10.1016/j.vetpar.2010.02.030
Brasil B, Nunes R, Bastianetto E, Drummond M, Carvalho D, Leite R, et al. Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. International Journal for Parasitology. 2012;42:469–479. DOI: https://doi.org/10.1016/j.ijpara.2012.03.003
Food and Agriculture Organization of the United Nations. Resistance Management and Integrated Parasite Control in Ruminants: Guidelines, first ed, FAO Animal Production and Health Division. Agricultural Dept, Rome; 2004.
Rojas D, López J, Tejada I, Vázquez V, Shimada A, Sánchez D, et al. Impact of condensed tannins from tropical forages on Haemonchus contortus burdens in Mongolian gerbils (Meriones unguiculatus) and Pelibuey lambs. Anim. Feed Sci. Technol. 2006;128:218–228. DOI: https://doi.org/10.1016/j.anifeedsci.2005.10.008
Alonso M, Torres J, Sandoval C, Hoste H, Aguilar A. In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Vet. Parasitol. 2008;153:313–319. DOI: https://doi.org/10.1016/j.vetpar.2008.01.042
Minho A, Bueno I, Louvandini H, Jackson F, Gennari S, Abdalla A. Effect of Acacia molissima tannin extract on the control of gastrointestinal parasites in sheep. Anim. Feed Sci. Technol. 2008;147:172–181. DOI: https://doi.org/10.1016/j.anifeedsci.2007.09.016
Domingues L, Giglioti R, Feitosa K, Fantatto R, Rabelo M, Oliveira M, et al. In vitro and in vivo evaluation of the activity of pineapple (Ananas comosus) on Haemonchus contortus in Santa Inês sheep. Vet. Parasitol. 2013;197:263-270. DOI: https://doi.org/10.1016/j.vetpar.2013.04.031
Ribeiro V, Avancini C, Gonçalves K, Toigo E, von Poser G. Acaricidal activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Vet. Parasitol. 2008;15:351–354. DOI: https://doi.org/10.1016/j.vetpar.2007.11.007
Poolperm S, Jiraungkoorskul W. An Update Review on the Anthelmintic Activity of Bitter Gourd, Momordica charantia. Pharmacogn. Rev. 2017;11:31-34. DOI: https://doi.org/10.4103/phrev.phrev_52_16
Andrade K, Duque D, Jaramillo D. Momordica charantia como alternativa terapéutica en la medicina veterinaria. Rev. Sist. Prod. Agroecol. 2012;3:15-35. DOI: https://doi.org/10.18387/polibotanica.41.6
Grover J, Yadav S. Pharmacological actions and potential uses of Momordica charantia: A review. Journal of Ethnopharmacology. 2004;93:123–132. DOI: https://doi.org/10.1016/j.jep.2004.03.035
Integrated Taxonomic Information System (ITIS). Momordica charantia. Taxonomic Serial No.:22399. Geological Survey, VA, USA; 2016.
Kritikar K, Basu B. Indian Medicinal Plants. The Indian Press, Allahabad. 1918; Volume 1, 590p.
Giron L, Freire V, Alonzo A, Caceres A. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. Journal of Ethnopharmacology. 1991;34:173–187. DOI: https://doi.org/10.1016/0378-8741(91)90035-C
Lans C, Brown G. Observations on ethnoveterinary medicines in Trinidad and Tobago. Preventive Veterinary Medicine. 1998;35:125–142. DOI: https://doi.org/10.1016/S0167-5877(97)00055-X
Satyawati G, Gupta A, Tandon N. Medicinal plants of India. first ed, Indian Council of Medical Research, New Delhi, 1987, 262p
Achi YL, Zinsstag J, Yao K, Yeo N, Dorchies P, Jacquiet P. Host specificity of Haemonchus spp. for domestic ruminants in the savanna in northern Ivory Coast. Vet. Parasitol. 2003;116:151–158. DOI: https://doi.org/10.1016/s0304-4017(03)00258-9
Vieira L, Cavalcante A, Pereira, M, Dantas L, Ximenes L. Evaluation of anthelmintic efficacy of plants available in Ceara State, north-east Brazil, for the control of goat gastrointestinal nematodes. Rev. Med. Vet [Internet]. 1999;150:447–452. Available from: https://www.revmedvet.com/artdes-us.php?id=53
Githiori J, Athanasiadou S, Thamsborg S. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet. Parasitol. 2006;139:308–320. DOI: https://doi.org/10.1016/j.vetpar.2006.04.021
Mihranian V, Abou C. Extraction, detection, and estimation of cucurbitin in Cucurbita seeds, J Lloydia [Internet]. 1968;31:23-29. Available from: https://eurekamag.com/research/014/472/014472546.php
Okabe H, Miyahara Y, Yamauchi T. Studies on the constituents of Momordica Charantia L. Isolation and characterisation of momordicosides A and B, glycosides of a pentahydroxy-cucurbitane triterpene. Chem Pharm Bull. 1980;28:2753-2762. DOI: https://doi.org/10.1248/cpb.28.2753
Morton J. Atlas of Medicinal Plants of Middle America, first ed, Springfield, Illinois, 1981; 34 – 40p.
Sanabria A. Análisis fitoquímico preliminar. first ed, Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Farmacia, Bogotá, 1983; 1-61p
Michael B, Meinke P, Shoop W. Comparison of ivermectin, doramectin, selamectin, and eleven intermediates in a nematode larval development assay. J Parasitol. 2001;87:692-696. https://doi.org/10.1645/0022-3395(2001)087[0692:coidsa]2.0.co;2
Bizimenyera E, Githiori J, Eloff J, Swan G. In vitro activity of Peltophorum africanum Sond. (Fabaceae) extracts on the egg hatching and larval development of the parasitic nematode Trichostrongylus colubriformis. Vet. Parasitol. 2006;142:336–343. DOI: https://doi.org/10.1016/j.vetpar.2006.06.013
Coles G, Bauer C, Borgsteede F, Geerts S, Klei T, Taylor M, et al. World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection ofanthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992;44:35–44. DOI: https://doi.org/10.1016/0304-4017(92)90141-u
Powers KG, Wood I, Eckert J, Gibson T, Smith H. World associations of the advancement of veterinary parasitology (WAAVP) guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine and ovine). Vet. Parasitol. 1982;10:265–284. DOI: https://doi.org/10.1016/0304-4017(82)90078-4
Costa J, Nascimento E, Campos A, Rodrigues F. Antibacterial activity of Momordica charantia (Curcubitaceae) extracts and fractions. J Basic Clin Pharm. 2010;2:45-51. DOI: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3979203/
Yaldiz G, Sekeroglu N, Kulak M, Demirkol G. Antimicrobial activity and agricultural properties of bitter melon (Momordica charantia L.) grown in northern parts of Turkey: A case study for adaptation. Nat Prod Res. 2015;29:543-545. DOI: https://doi.org/10.1080/14786419.2014.949706
Pitchakarn P, Ogawa K, Suzuki S, Takahashi S, Asamoto M, Chewonarin T. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci. 2010;101:2234-2240. DOI: https://doi.org/10.1111/j.1349-7006.2010.01669.x
Shobha C, Vishwanath P, Suma M, Prashant A, Rangaswamy C, Gowdappa B. In vitro anti-cancer activity of ethanolic extract of Momordica charantia on cervical and breast cancer cell lines. J of Health Allied Sci [Internet] 2015;4:210-217. Available from: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.4103%2F2278-344X.167649
Tahira S, Hussain F. Antidiabetic evaluation of Momordica charantia L fruit extracts. West Indian Med J. 2014;63:294-299. DOI: https://doi.org/10.7727/wimj.2013.180
Perumal V, Khoo W, Abdul-Hamid A, Ismail A, Saari K, Murugesu S. Evaluation of antidiabetic properties of Momordica charantia in streptozotocin Induced diabetic rats using metabolomics approach. J Food Res [Internet] 2015;22:1298-1306. Available from: https://www.researchgate.net/publication/282198654_Evaluation_of_antidiabetic_properties_of_Momordica_charantia_in_streptozotocin_induced_diabetic_rats_using_metabolomics_approach
Meera S, Nagarjuna C. Antistress and immunomodulatory activity of aqueous extract of Momordica charantia. Pharmacogn Mag [Internet]. 2009;5:69-73. Available from: https://www.researchgate.net/publication/287479315_Antistress_and_immunomodulatory_activity_of_aqueous_extract_of_Momordica_charantia
Gupta M, Sharma S, Bhadauria R. In vitro efficacy of Momordica charantia extracts against phytopathogenic fungi, Fusarium oxysporum. J Biopesticides [Internet] 2016;9:8-22. Available from: https://www.researchgate.net/publication/304956887_In_vitro_efficacy_of_Momordica_charantia_extracts_against_phytopathogenic_fungi_Fusarium_oxysporum
Wang S, Zheng Y, Xiang F, Li S, Yang, G. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. J Food Drug Anal [Internet]. 2016;24:881-887. Available from: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jfda.2016.03.006
Puri M, Kaur I, Kanwar R, Gupta R, Chauhan A, Kanwar J. Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Curr Mol Med. 2009;9:1080-1094. DOI: https://doi.org/10.2174/156652409789839071
Tjokropranoto R, Nathania M. Anthelmintic effect of ethanol extract of pare leaf (Momordica charantia L.) against female Ascaris suum worm in vitro. J Med Planta [Internet]. 2011;1:33-39. Available from: https://www.neliti.com/publications/245875/anthelmintic-effect-of-ethanol-extract-of-pare-leaf-momordica-charantia-l-agains
Chastity C, Yuwono K, Utami U, PralaAyu A, Priscillah W, Sutrisna E. The anthelmintics effect of Momordica charantia L. leaves and Andrographis paniculata Ness. from Indonesia. Int J Ayurveda Pharm Res [Internet]. 2015;3:33-9. Available from: https://ijapr.in/index.php/ijapr/article/view/127
Shahadat H, Mostofa, M.; Mamun, M.; Hoque, M.; Awal, M. Comparative efficacy of korolla (Momordica charantia) extract and Ivermec® pour on with their effects on certain blood parameters and body weight gain in indigenous chicken infected with Ascaridia galli. Bangladesh J Vet Med. 2008;6:153-158. DOI: https://doi.org/10.1016/j.vetpar.2007.05.015
Alam M, Alam K, Begum N, Amin M. Comparative efficacy of different herbal and modern anthelmintics against gastrointestinal nematodiasis in fowl. J Biol Res [Internet]. 2014;2:145-148. Available from: https://www.sciencepubco.com/index.php/IJBR/article/view/3584
USDA Composition of Foods Raw, Processed, Prepared USDA. National Nutrient Database for Standard Reference, Release 21, US Department of Agriculture, Maryland; 2008.
Wang L, Wang M, Li Q, Cai T, Jiang W. Partial properties of an aspartic protease in bitter gourd (Momordica charantia L.) fruit and its activation by heating. Food Chem. 2008;108:496-502. DOI: https://doi.org/10.1016/j.foodchem.2007.10.085
Islam S, Jalaluddin M, Hettiarachchy N. Bio-active compounds of bitter melongenotypes (Momordica charantia L.) in relation to their physiological functions. Functional Foods in Health & Disease. 2011;2:61–74. DOI: https://doi.org/10.31989/ffhd.v1i2.139
Bauri R, Tigga M, Kullu S. A review on use of medicinal plants to control parasites. Indian J Nat Prod Resour. [Internet] 2015;6:268-277. Available from: https://www.researchgate.net/publication/292161550_A_review_on_use_of_medicinal_plants_to_control_parasites
Aleman Y, Ferreira L, Pino O, Dias M, Roque E.; de Souza A. Anthelmintic activity in vitro of Citrus sinensis and Melaleuca quinquenervia essential oil from Cuba on Haemonchus contortus. Industrial Crops and Products. 2015;76:647-652. DOI: https://doi.org/10.1016/j.indcrop.2015.07.056
Cavalcante G, de Morais S, Andre W, Ribeiro W. Rodrigues A, De Lira F, et al. Chemical composition and in vitro activity of Qªª (Ait.) latex on Haemonchus contortus. Vet. Parasitol. 2016;226:22–25. DOI: https://doi.org/10.1016/j.vetpar.2016.06.012
Zhu L, Dai J, Yang L, Qiu J. In vitro ovicidal and larvicidal activity of the essential oil of Artemisia lancea against Haemonchus contortus (Strongylida). Vet Parasitol. 2013;195:112–117. DOI: https://doi.org/10.1016/j.vetpar.2012.12.050
Minho A, Domingues L, Gainza Y, Figueiredo A, Boligon A, Domingues R, et al. In vitro screening of plant extract on Haemonchus contortus and Rhipicephalus (Boophilus) microplus. Journal of Essential Oil Research. 2020;32:269-278. DOI: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1080%2F10412905.2020.1746414
Carvalho C, Chagas A, Cotinguiba F, Furlan M, Brito L, Chaves F, et al. The anthelmintic effect of plant extracts on Haemonchus contortus and Strongyloides venezuelensis. Vet Parasitol. 2012;183:260-268. DOI: https://doi.org/10.1016/j.vetpar.2011.07.051
Ferreira L, Benincasa B, Fachin A, Franca S, Contini S, Chagas A, et al. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep. Vet Parasitol, 2016;228:70–76. DOI: https://doi.org/10.1016/j.vetpar.2016.08.011
Kanojiya D. Shanker D, Sudan V, Jaiswal A, Parashar R. Anthelmintic activity of Ocimum sanctum leaf extract against ovine gastrointestinal activity of nematodes in India. Research in Veterinary Science. 2015;99:165-170. DOI: https://doi.org/10.1016/j.rvsc.2015.01.017
Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E. Haemonchus contortus: In vitro and in vivo anthelmintic activity of aqueous and hydro-alcoholic extracts of Hedera helix. Experimental Parasitology. 2007;116:340–345. DOI: https://doi.org/10.1016/j.exppara.2007.01.019
Davuluri T, Chennuru S, Pathipati M, Krovvidi S, Rao G. In Vitro Anthelmintic Activity of Three Tropical Plant Extracts on Haemonchus contortus. Acta Parasit. 2019;65:11-18. DOI: https://dx.doi.org/10.2478/s11686-019-00116-x
Mengistu G, Hoste H, Karonen M, Salminen J, Hendriks W, Pellikaan W. The in vitro anthelmintic properties of browse plant species against Haemonchus contortus is determined by the polyphenol content and composition. Vet Parasitol. 2017;237:110–116. DOI: https://doi.org/10.1016/j.vetpar.2016.12.020
Shan B, Xie J, Zhu J, Peng Y. Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food Bioproducts Process. 2012;90:579-587. DOI: https://doi.org/10.1016/j.fbp.2011.09.004
Chaudary F, Qayyum M, Miller J. Development and survival of Haemonchus contortus infective larvae derived from sheep faeces under sub-tropical conditions in the Potohar region of Pakistan. Trop. Anim. Health Prod. 2008;40:85–92. DOI: https://doi.org/10.1007/s11250-007-9037-x
Stepek G, Behnke J, Buttle D, Duce I. Natural plant cysteine proteinases as anthelmintic? Trends Parasitol. 2004;20:322–327. DOI: https://doi.org/10.1016/j.pt.2004.05.003
Buttle D, Behnke J, Bartley Y, Elsheikha H. Bartley D, Garnett M, et al. Oral dosing with papaya latex is an effective anthelmintic treatment for sheep infected with Haemonchus contortus. Parasite Vector. 2011;4:1–11. DOI: https://doi.org/10.1186/1756-3305-4-36
Mansfield L, Gamble H, Fetterer R. Characterization of the eggshell of Haemonchus contortus-I. Structural components. Comp. Biochem. Physiol. 1992;103:681–686. DOI: https://doi.org/10.1016/0305-0491(92)90390-D
Beloin N, Gbeassor M, Akpagana K, Hudson J, Soussa K, Koumaglo K, et al. Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. Journal of Ethnopharmacology. 2005;96:49–55. DOI: https://doi.org/10.1016/j.jep.2004.08.009
Ling B, Wang G, Ya J, Zhang M, Liang G. Antifeedant activity and active ingredients against Plutella xylostella from Momordica charantia leaves. Agricultural Sciences in China. 2008;7:1466-1473. DOI: https://doi.org/10.1016/S1671-2927(08)60404-6
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dumar Alexander Jaramillo Hernández, Adolfo VÁSQUEZ TRUJILLO, Lida Carolina LESMES RODRÍGUEZ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice and Open Access Statement
The Journal Vitae works under the Open Access license, and the published manuscripts remain available for the public, both on the Journal's website and in databases, under the Creative Commons license, "Noncommercial Attribution" and "Share alike" systems, adopted in Colombia. Hence, when the authors agree to publish in the Journal Vitae, they will not have the right to economic retributions on publications and reproductions through different diffusion media. The documents are freely available to the internet public, permitting users to read, download, copy, distribute, print, search, or link to the full texts and pass them as data to software. The only constraint on reproduction and distribution, should be to give authors control over the integrity of their work and the right to be appropriately acknowledged and cited.
Authors declare that:
-
They are the intellectual property owners and are responsible for all the information stated in the article.
-
This manuscript has not been submitted or published in other printed or digital media. They accept the responsibility for the judgments, opinions, and points of view expressed in the published article and, therefore, they exonerate Universidad de Antioquia and Journal Vitae from any process.
-
They exempt Universidad de Antioquia and Journal Vitae from settling conflicts or disputes related to the authorship of the referred article.
-
They accept the revision of the original manuscript by suitable personnel, and they bind themselves to perform the corrections appointed or suggested by the assessors.
-
Therefore, they know the editorial process and will not bind the Editorial Board of the Journal to assume any obligations regarding the volume and issue in which the article is published.
-
They transfer the rights of publication, reprinting, and distribution of the article from the moment of its approval, in print and digital format, without the right to economic rewards, and under the licensing conditions considered relevant by Journal Vitae.
-
They fully authorize Universidad de Antioquia and Journal Vitae to submit the published material to the diverse databases and indexing systems where the Journal can be found to comply with the requirements of the regulatory authorities to maintain the national classification of journals.
-
They will assume the article publication costs established for the current issue, and they will make the payment as soon as they are informed about the volume and the issue in which the final version of the article is published.
-
After the article is published, you can share digital or printed copies in a noncommercial manner. You will be able to use the paper in your institution or company for educational or research purposes, including the use in course programs.
Conflict of interest: Authors are responsible for recognizing and disclosing any financial or other benefits that could be perceived to bias their work, acknowledging all financial support and any personal connections with potential sponsors. Examples of such conflicts include receiving research funds or honoraria, serving on advisory boards, stock ownership, or employment and consulting arrangements. Authors without such connections should clearly state that they have no financial support or personal relationships that could be perceived to bias their work. All conflicts of interest should be disclosed on the author's identification page of the manuscript.