Effect of a diet rich in potato peel on platelet aggregation

Authors

  • Mario Francisco Guerrero Pabón Pharmacy Department, Faculty of Sciences, "Universidad Nacional de Colombia, Sede Bogotá" https://orcid.org/0000-0003-1789-1818
  • David C. Borda Pharmacy Department, Faculty of Sciences, "Universidad Nacional de Colombia, Sede Bogotá"

DOI:

https://doi.org/10.17533/udea.vitae.v31n1a349415

Keywords:

Solanum tuberosum, Potato, Platelet aggregation, Caffeic acid, Chlorogenic acid

Abstract

Background: Potato peel extract has demonstrated the ability to reduce platelet aggregation in vitro, suggesting its potential as a dietary intervention for preventing atherothrombotic disorders.
Objective: This study aims to evaluate the impact of a potato peel-rich diet on platelet aggregation.
Methods A randomized, crossover-controlled, open two-period study was carried out with the participation of 12 healthy volunteers. Platelet aggregation was assessed before and after a seven-day dietary intervention. Participants consumed either a diet rich in potato peel (2 g/kg/d) or acetylsalicylic acid (ASA) as a reference (100 mg/d). Platelet aggregation percentages were measured following stimulation with arachidonic acid (AA, 150 µg/mL), adenosine diphosphate (ADP, 10 µM), and collagen (COL, 10 µg/mL).
Results: The potato peel-rich diet resulted in a slight but significant reduction in platelet aggregation when stimulated with arachidonic acid compared to baseline values (85.0±2.0% vs. 91.3±1.7%, p<0.05). This effect was less pronounced than the reduction achieved with ASA (16±1.9%, p<0.001).
Conclusion: The administration of a diet rich in potato peel reduces platelet aggregation induced by arachidonic acid, suggesting its potential role in the prevention of atherothrombotic disorders.

 

|Abstract
= 228 veces | PDF
= 212 veces|

Downloads

Download data is not yet available.

Author Biography

Mario Francisco Guerrero Pabón, Pharmacy Department, Faculty of Sciences, "Universidad Nacional de Colombia, Sede Bogotá"

Area de Farmacología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá

 

References

Magrone T, Magrone M, Russo MA, Jirillo E. Platelets: Angels and demons dancing on the immune stage. Nutrition conducts the orchestra. Endocr Metab Immune Disord Drug Targets. 2021;21(7):1196-218. DOI: https://doi.org/10.2174/1871530320666200901183119.

Bachmair EM, Ostertag LM, Zhang X, de Roos B. Dietary manipulation of platelet function. Pharmacol Ther. 2014;144(2):97-113. DOI: https://doi.org/10.1016/j.pharmthera.2014.05.008

Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Muñoz D, Smith SC Jr, Virani SS, Williams KA Sr, Yeboah J, Ziaeian B. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):596-646. DOI: https://doi.org/10.1161/CIR.0000000000000678.

Tosti V, Bertozzi B, Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 2018; 73(3):318-26. DOI: https://doi.org/10.1093/gerona/glx227.

Buitrago DM, Puebla P, Guerrero MF. Antiplatelet Activity of Metabolites Isolated from Solanum tuberosum. Lat. Am. J. Pharm. 2019;38(8):1575-81. Available from http://www.latamjpharm.org/resumenes/38/8/LAJOP_38_8_1_14.pdf

Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther. 2021;6(1):94. DOI: https://doi.org/10.1038/s41392-020-00443-w.

Pacifico D, Lanzanova C, Pagnotta E, Bassolino L, Mastrangelo AM, Marone D, et al. Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection-A Review. Molecules. 2021; 26(8):2174. DOI: https://doi.org/10.3390/molecules26082174.

Camire ME, Kubow S, Donnelly DJ: Potatoes and human health. Crit Rev Food Sci Nutr. 2009;49(10):823-40. DOI: https://doi.org/10.1080/10408390903041996.

Agarwal S, Fulgoni VL. Intake of Potatoes Is Associated with Higher Diet Quality, and Improved Nutrient Intake and Adequacy among US Adolescents. Nutrients. 2021; 13(8):2614. DOI: https://doi.org/10.3390/nu13082614.

Buitrago RO, Peñuela L. La papa: un alimento de oportunidades con opciones de comercialización internacional. Equidad y Desarrollo. 2018 32:181-206. Available from https://doi.org/10.19052/ed.5135.

Cebulak T, Krochmal-Marczak B, Stryjecka M, Krzysztofik B, Sawicka B, Danilčenko H, Jarienè E. Phenolic Acid Content and Antioxidant Properties of Edible Potato (Solanum tuberosum L.) with Various Tuber Flesh Colours. Foods. 2022;12(1):100. DOI: https://doi.org/10.3390/foods12010100.

Odunayo MA, Ganiyu O. Caffeic acid and chlorogenic acid: Evaluation of antioxidant effect and inhibition of key enzymes linked with hypertension.J Food Biochem. 2018;42(4): e12541. DOI: https://doi.org/10.1111/jfbc.12541.

Omayio DG, Abong GO and Okoth MW. A Review of Occurrence of Glycoalkaloids in Potato and Potato Products. Curr Res Nutr Food Sci. 2016;4(3):195-202. DOI: http://dx.doi.org/10.12944/CRNFSJ.4.3.05

European Food Safety Authority (EFSA). Outcome of a public consultation on the draft risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA Supporting Publications. 2020;18(8): e06222 http://dx.doi.org/10.2903/sp.efsa.2020.EN-1905.

Hvas AM, Favaloro EJ. Platelet Function Analyzed by Light Transmission Aggregometry. Methods Mol Biol. 2017; 1646:321-331. DOI: http://dx.doi.org/10.1007/978-1-4939-7196-1_25.

Buitrago DM, Ramos G, Rincón J, Guerrero MF. Antiaggregant activity of the ethanlic extracts of Solanum tuberosum in human platelets. VITAE, 2007;14(1):49-54. DOI: https://doi.org/10.17533/udea.vitae.568.

Neiva TJ, Moraes AC, Schwyzer R, Vituri CL, Rocha TR, Fries DM, Silva MA, Benedetti AL. In vitro effect of the herbicide glyphosate on human blood platelet aggregation and coagulation. Rev. Bras. Hematol. Hemoter. 2010;32(4):291-4. DOI: http://dx.doi.org/10.1590/S1516-84842010005000087.

Belleudi V, Trotta F, Vecchi S, Amato L, Addis A, Davoli M. Studies on drug switchability showed heterogeneity in methodological approaches: a scoping review. J Clin Epidemiol. 2018; 101:5-16. DOI: http://dx.doi.org/10.1016/j.jclinepi.2018.05.003.

Wilcox R, Peterson TJ, Gray JL. Data Analyses When Sample Sizes Are Small: Modern Advances for Dealing with Outliers, Skewed Distributions, and Heteroscedasticity. J Appl Biomech. 2018;34(4):258-261. DOI: http://dx.doi.org/10.1123/jab.2017-0269.

Houston M, Minich D, Sinatra ST, Kahn JK, Guarneri M. Recent Science and Clinical Application of Nutrition to Coronary Heart Disease. J Am Coll Nutr. 2018; 37(3):169-187. DOI: http://dx.doi.org/10.1080/07315724.2017.1381053.

Guerrero MF, Carrón R, Martín ML. Identification of hypotensive activity of the ethanolic extract from Solanum tuberosum in rats. Rev Colomb Sci Chem Pharm. 2003;32(1):30-6. DOI: http://dx.doi.org/10.15446/rcciquifa.

Choi JH, Kim S. Investigation of the anticoagulant and antithrombotic effects of chlorogenic acid. J Biochem Mol Toxicol. 2017;31(3): e21865. DOI: http://dx.doi.org/10.1002/jbt.21865.

ILu Y, Li Q, Liu YY, Sun K, Fan JY, Wang CS, Han JY. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci Rep. 2015; 5:13824. DOI: http://dx.doi.org/10.1038/srep13824.

Pepe A, Frey ME, Muñoz F, Fernández MB, Pedraza A, Galbán G, García DN, Daleo GR, Guevara MG. Fibrin (ogen) olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3). Biochimie. 2016; 125:163-70. DOI: http://dx.doi.org/10.1016/j.biochi.2016.03.015.

Mystkowska I, Zarzecka K, Gugała M and Sikorska A. The Polyphenol Content in Three Edible Potato Cultivars Depending on the Biostimulants UsedAgriculture. 2020; 10(7):1-8. DOI: http://dx.doi.org/10.3390/agriculture10070269.

Platelet Aggregation in Response to Potato Peel Diet (2 g/kg/d) and Acetylsalicylic Acid (ASA, 100 mg/d) Stimulated by Adenosine Diphosphate (ADP, 10 µM) in Healthy Volunteers After Seven Days of Treatment

Downloads

Published

05-03-2024

How to Cite

Guerrero Pabón, M. F., & Borda, D. C. (2024). Effect of a diet rich in potato peel on platelet aggregation. Vitae, 31(1). https://doi.org/10.17533/udea.vitae.v31n1a349415

Issue

Section

Farmacología y Toxicología

Most read articles by the same author(s)