Preparation of a probiotic quinoa beverage by enzymatic hydrolysis of its starches and subsequent lactic acid fermentation

Authors

  • Carolina Stefany Huapaya Castillo Universidad Nacional Agraria La Molina https://orcid.org/0000-0002-8988-0715
  • Juan G. Juscamaita Morales Universidad Nacional Agraria La Molina

DOI:

https://doi.org/10.17533/udea.vitae.v30n2a352397

Keywords:

Probiotic quinoa beverage, Fermented functional beverages, Probiotics, Plant-based foods

Abstract

BACKGROUND: The concern about consuming healthy foods has increased in recent years. Not only are they expected to comply with essential feeding functions, but they also provide health benefits. Probiotics are one of the main functional components expected to be present in functional foods and beverages. They provide many health benefits and stand out due to their metabolic capacities and adaptability to different habitats. In addition, Quinoa seeds contain valuable quantities of quality protein and nutritional values of carbohydrates, proteins, fats, fibers, and mineral substances for which they are considered an ideal dietary alternative.
OBJECTIVES: This research aimed to elaborate on a probiotic quinoa beverage, which combines the effect of enzymatic hydrolysis of the starches obtained from its seeds with lactic acid fermentation using probiotic cultures, seeking to enhance its nutritional properties and converting it into a functional beverage.
METHODS: For this, fermentations were carried out in three different concentrations of probiotic cultures (inoculum): 10%, 5%, 1%, and three other different fermentation times: 8, 10, and 12 hours. pH, Total titrable acidity expressed as lactic acid (%), reducing sugars, and soluble solids were measured. After that, the beverage was formulated with honey, carob, preservatives, and mango flavoring.
RESULTS: Statistical analysis indicated optimal conditions were achieved with 10% probiotic cultures and 10 hours of fermentation. The microbiological analysis confirmed the presence of probiotic microorganisms at a concentration of 108 CFU/mL. Proximal analysis indicated that the composition contained 84.6 Kcal, 19.3 g of carbohydrates, and 1.4 g of protein per 100 g of beverage.
CONCLUSIONS: The probiotic quinoa beverage was produced and can be considered in the group of plant-based foods, as well as a functional beverage, since the probiotic cultures it contains contribute to maintaining the intestinal microbiota and prevent the onset of chronic diseases.

|Abstract
= 618 veces | PDF
= 343 veces| | HTML
= 4 veces|

Downloads

Download data is not yet available.

References

Álvarez-Calatayud, G., Guarner, F., Requena, T., & Marcos, A. (2018). Dieta y microbiota. Impacto en la salud. Nutrición hospitalaria: órgano oficial de la Sociedad Española de Nutrición Parenteral y Enteral, 35(Spec6), 11–15. https://doi.org/10.20960/nh.2280

Requena, T., & Velasco, M. (2021). Microbioma humano en la salud y la enfermedad. Revista Clínica Española, 221(4), 233–240. https://doi.org/10.1016/j.rce.2019.07.004

Ursa Herguedas, A. J.; Ursa Bartolomé, M. I. (2022). Manejo de la microbiota intestinal en la prevención y tratamiento de las enfermedades de la civilización. Medicina Naturista. 16 (1), 9-13.

Maza-Avila, F. J., Caneda-Bermejo, M. C., & Vivas-Castillo, A. C. (2022). Hábitos alimenticios y sus efectos en la salud de los estudiantes universitarios. Una revisión sistemática de la literatura. Psicogente, 25(47), 1–31. https://doi.org/10.17081/psico.25.47.4861

Divella, R., De Palma, G., Tufaro, A., Pelagio, G., Gadaleta-Caldarola, G., Bringiotti, R., & Paradiso, A. (2021). Diet, probiotics and physical activity: The right allies for a healthy Microbiota. Anticancer Research, 41(6), 2759–2772. https://doi.org/10.21873/anticanres.15057

Shi, G., Lin, Y., Wu, Y., Zhou, J., Cao, L., Chen, J., Li, Y., Tan, N., & Zhong, S. (2022). Bacteroides fragilis supplementation deteriorated metabolic dysfunction, inflammation, and aorta atherosclerosis by inducing gut Microbiota dysbiosis in animal model. Nutrients, 14(11), 2199. https://doi.org/10.3390/nu14112199

Rosenfeld, D. L., Bartolotto, C., & Tomiyama, A. J. (2022). Promoting plant-based food choices: Findings from a field experiment with over 150,000 consumer decisions. Journal of Environmental Psychology, 81(101825), 101825. https://doi.org/10.1016/j.jenvp.2022.101825

Yang, Z., Zhu, X., Wen, A., & Qin, L. (2022). Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri. Food Science & Nutrition, 10(9), 3143–3153. https://doi.org/10.1002/fsn3.2913

Otles, S., & Nakilcioglu-Tas, E. (2022). Cereal‐based functional foods. In: Functional Foods (pp. 55–90). Wiley. https://doi.org/10.1002/9781119776345.ch3

Quispe-Herrera, R., Paredes Valverde, Y., & Roque Huamani, J. R. (2022). Capacidad antioxidante y análisis proximal de néctar a base de Solanum sessiliflorum y Chenopodium quinoa Willdenow. Agronomía Mesoamericana: Órgano divulgativo del PCCMCA, Programa Cooperativo Centroamericano de Mejoramiento de Cultivos y Animales, 47706. https://doi.org/10.15517/am.v33i2.47706

Meng, F.-B., Zhou, L., Li, J.-J., Li, Y.-C., Wang, M., Zou, L.-H., Liu, D.-Y., & Chen, W.-J. (2022). The combined effect of protein hydrolysis and Lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Research International (Ottawa, Ont.), 157(111416), 111416. https://doi.org/10.1016/j.foodres.2022.111416

Ziarno, M., & Cichońska, P. (2021). Lactic acid bacteria -fermentable cereal- and pseudocereal-based beverages. Microorganisms, 9(12), 2532. https://doi.org/10.3390/microorganisms9122532

Pino, A., Nicosia, F. D., Agolino, G., Timpanaro, N., Barbagallo, I., Ronsisvalle, S., Caggia, C., & Randazzo, C. L. (2022). Formulation of germinated brown rice fermented products functionalized by probiotics. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 80(103076), 103076. https://doi.org/10.1016/j.ifset.2022.103076

Hadjimbei, E., Botsaris, G., & Chrysostomou, S. (2022). Beneficial effects of yoghurts and probiotic fermented milks and their functional food potential. Foods (Basel, Switzerland), 11(17), 2691. https://doi.org/10.3390/foods11172691

Rosales-Bravo, H.; Vázquez-Martínez, J.; Morales-Torres, H. C.; Olalde-Portugal, V. (2020). Evaluación de propiedades tecno-funcionales de cepas probióticas comerciales del género Lactobacillus. Revista Internacional de Investigación e Innovación Tecnológica. 8 (45), 1-19.

Chen H. Y., Hsieh C. W., Chen P. C., Lin S. P., Lin Y. F., Cheng K. C. (2021). Development and Optimization of Djulis Sourdough Bread Fermented by Lactic Acid Bacteria for Antioxidant Capacity. Molecules. 26(18):5658. https://doi.org/10.3390/molecules26185658

Nutrimix (2021). Harina de Quinua. Nutrimix.pe. Recuperado el 16 de octubre de 2022, de https://nutrimix.pe/harinas/harina-de-quinua/

Zanabria Galvez, S. J. 2003. Obtención de una bebida a partir de quinua hidrolizada. Tesis de maestría. [Universidad Nacional Agraria La Molina]. Lima, Perú.

Vivolac Cultures Corporation. 2012. Certificate of analysis. Vivolac Dri-set Bioflora Aby 424

Hernández Plata, C. G., Pantoja Avila, L. K., & Turriago Mojica, S. C. (2002). Evaluación de la presencia de bacteriocinas en cultivos de bacterias ácido lácticas. Tesis de pregrado. [Universidad de la Sabana]. Colombia.

Chacón Villalobos, A. (2005). Comparación de la titulación de la acidez de leche caprina y bovina con hidróxido de sodio y cal común saturada. Agronomy Mesoamerican, 17(1), 55–61. https://doi.org/10.15517/am.v17i1.5066

Gutiérrez-Correa, M.; Villena Chávez, G. 2010. Microbiología industrial: Guía de prácticas. Laboratorio de Micología y Biotecnología. Universidad Nacional Agraria La Molina. Perú

Correa Mosquera, A. R., & Cuenca Quicazan, M. M. (2022). Evaluation of lactic acid fermentation in a dairy and non-dairy beverage using two commercial starter cultures. Vitae, 29(2), 1-8. https://doi.org/10.17533/udea.vitae.v29n2a347447

Dirección General de Salud Ambiental (DIGESA). 2001. Manual de Análisis Microbiológico de alimentos. República del Perú.

Fincan, S. A., Özdemir, S., Karakaya, A., Enez, B., Mustafov, S. D., Ulutaş, M. S., & Şen, F. (2021). Purification and characterization of thermostable α-amylase produced from Bacillus licheniformis So-B3 and its potential in hydrolyzing raw starch. Life Sciences, 264(118639), 118639. https://doi.org/10.1016/j.lfs.2020.118639

Ribeiro, S. C., Coelho, M. C., & Silva, C. C. G. (2021). A rapid screening method to evaluate acidifying activity by lactic acid bacteria. Journal of Microbiological Methods, 185(106227), 106227, 1-6. https://doi.org/10.1016/j.mimet.2021.106227

D’Souza, G. G., Povolo, V. R., Keegstra, J. M., Stocker, R., & Ackermann, M. (2021). Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. The ISME Journal, 15(9), 2614–2626. https://doi.org/10.1038/s41396-021-00953-7

Peetermans, A., Foulquié-Moreno, M. R., & Thevelein, J. M. (2021). Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microbial Cell (Graz, Austria), 8(6), 111–130. https://doi.org/10.15698/mic2021.06.751

Repo-Carrasco, R., Espinoza, C., & Jacobsen, S.-E. (2003). Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food reviews International, 19(1–2), 179–189. https://doi.org/10.1081/fri-120018884

Sun, Z., Cong, Y., Li, T., Meng, X., & Zhang, F. (2022). Enhancement of nutritional, sensory and storage stability by lactic fermentation of Auricularia auricula. Journal of the Science of Food and Agriculture, 102(12), 5172–5180. https://doi.org/10.1002/jsfa.11869

Lima, W. D. L., Monteiro, S. S., & Pasquali, M. A. de B. (2022). Study of fermentation strategies by Lactobacillus gasseri for the production of probiotic food using passion fruit juice combined with green tea as raw material. Foods (Basel, Switzerland), 11(10), 1471. https://doi.org/10.3390/foods11101471

Cañón Rodríguez, D. F. (2022). Evaluación de las Propiedades Fisicoquímicas de una Bebida Fermentada utilizando Lactosuero Comercial y Harina de Quinua (Chenopodium quinoa Willd) Cultivada en Cundinamarca. Tesis de pregrado [Universidad Nacional Abierta y a Distancia UNAD]. Colombia.

Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M., & Saris, P. E. J. (2022). Antifungal preservation of food by lactic acid bacteria. Foods (Basel, Switzerland), 11(3), 395. https://doi.org/10.3390/foods11030395

Díaz Trujillo, M. P. y Villa Fonseca, D. S. (2021). Formulación de un producto lácteo (yogurt) a partir de la pitahaya amarilla y sus subproductos (semillas y cáscara). Tesis de pregrado. [Universidad de los Andes]. Colombia.

Prajapati J.B.; Hati S. 2022. Nutritional Benefits of Enriching Dairy Foods with Probiotics. ILSI India Monograph Series on Science for Public Health Vol 3. ILSI India Knowledge Center on Functional Foods, Immunity and Gut Health. India.

Cuenca, M. M., & Quicazán, M. C. (2004). Comparación de la Fermentación de Bebida de Soya y Leche de Vaca utilizando un Cultivo Láctico Comercial. Ingeniería y Competitividad, 5(2), 16-22. https://doi.org/10.25100/iyc.v5i2.2292

Karp, G. (2009). Biología celular y molecular. McGraw-Hill Interamericana. Pág 40.

Huapaya Castillo, C. S. (2014). Elaboración de una bebida probiótica a partir de la fermentación láctica del almidón hidrolizado de harina de quinua Chenopodium quinoa. Tesis de pregrado. [Universidad Nacional Agraria La Molina]. Perú.

Abd El-Hakim, A., Mady, E., M. Abou Tahoun, A., S.A. Ghaly, M., & A. Eissa, M. (2022). Seed quality and protein classification of some quinoa varieties. Inżynieria Ekologiczna, 23(1), 24–33. https://doi.org/10.12911/22998993/143866

Arenas-Suescún, C.; Zapata-Fernandez, R.; Gutiérrez-Cortéz, C. (2012). Evaluación de la fermentación láctica de leche con adición de quinua (Chenopodium quinoa). Vitae, 19(1), S276-S278.

Shori, A. B., & Al Zahrani, A. J. (2022). Non-dairy plant-based milk products as alternatives to conventional dairy products for delivering probiotics. Food Science and Technology, 42, 1-14. https://doi.org/10.1590/fst.101321

Ibrahim, S. A., Ayivi, R. D., Zimmerman, T., Siddiqui, S. A., Altemimi, A. B., Fidan, H., Esatbeyoglu, T., & Bakhshayesh, R. V. (2021). Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods (Basel, Switzerland), 10(12), 3131. https://doi.org/10.3390/foods10123131

Küçükgöz, K., & Trząskowska, M. (2022). Nondairy probiotic products: Functional foods that require more attention. Nutrients, 14(4), 753. https://doi.org/10.3390/nu14040753

Mousanejadi, N., Barzegar, H., Alizadeh Behbahani, B., Jooyandeh H. (2023). Production and evaluation of a functional fruit beverage consisting of mango juice and probiotic bacteria. Food Measure https://doi.org/10.1007/s11694-023-01862-3

Lorusso A, Coda R, Montemurro M, Rizzello CG. (2018). Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods. 7(4):51. https://doi.org/10.3390/foods7040051

Boukid F, Hassoun A, Zouari A, Tülbek MÇ, Mefleh M, Aït-Kaddour A, Castellari M. (2023). Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods.; 12(5):1005. https://doi.org/10.3390/foods12051005

Total titrable acidity produced at different fermentation times and different inoculum concentrations

Downloads

Published

18-07-2023

How to Cite

Huapaya Castillo, C. S., & Juscamaita Morales , J. G. (2023). Preparation of a probiotic quinoa beverage by enzymatic hydrolysis of its starches and subsequent lactic acid fermentation. Vitae, 30(2). https://doi.org/10.17533/udea.vitae.v30n2a352397

Issue

Section

Foods: Science, Engineering and Technology