Genotoxic and Mutagenic Assessment Induced by Vinasse, Before and After Being Subjected to Bio-oxidation and Fenton Processes.

Authors

  • Iván Meléndez Gélvez Profesor Universidad de Pamplona https://orcid.org/0000-0003-1833-6373
  • Diego Alberto Salazar Moncada Professor in the Department of Pharmacy, University of Antioquia, Colombia
  • Elkín Johan Granados Vega Profesor Departamento de Farmacia, Universidad de Antioquia, Colombia https://orcid.org/0000-0002-3851-2752
  • Jennifer Carolina Soledad Maldonado Student in the Biology program, University of Pamplona https://orcid.org/0009-0000-7410-8338
  • Carlos Alberto Peláez Jaramillo Ph.D. Professor, Institute of Chemistry, University of Antioquia, Colombia

DOI:

https://doi.org/10.17533/udea.vitae.v31n2a357688

Keywords:

Vinasse, bioethanol, lymphocytes, comet assay, bio-oxidation

Abstract

Background: Colombia is joining global initiatives to mitigate climate change through bioethanol production, as it has large sugar cane plantations and sugar mills, particularly in the Valle del Cauca region. One of the main by-products of the bioethanol industry is vinasse, which consists mainly of water, organic solids and heavy metals. Some of the compounds present in vinasses, such as melanoidins and phthalates, show genotoxic, mutagenic and carcinogenic activity in onion cells, tilapia and aquatic organisms. Various methods, such as bio-oxidation and Fenton reaction, have been used to reduce the organic load of vinasses. Among the most commonly used assays to study genotoxicity and mutagenicity are single cell gel electrophoresis (comet assay) and the Ames test.
Objective: In this study, the genotoxicity in human lymphocytes and the mutagenicity in Salmonella typhimurium induced by different dilutions of vinasse produced at the bioethanol production plant in Frontino, Antioquia, before and after being subjected to biooxidation and Fenton processes, were evaluated.
Methods: Genotoxicity was evaluated by the comet assay in human lymphocytes, and mutagenic activity was evaluated by the Ames test using Salmonella typhimurium strains TA98 and TA100, with and without the addition of microsomal enzymes (S9). Both tests were applied to each type of vinasse considered in this study, including raw vinasse (RV), bio-oxidised vinasse (BV) and Fenton oxidised vinasse (FV). Results: The results showed that at RV doses above 3%, viability decreased to values between 70% and 88%, whereas for BV and FV, viability remained above 93% and 94%, respectively. Vinasse was also found to have a dose-dependent effect on genotoxicity. However, no mutagenic activity was observed in any of the Salmonella strains evaluated, indicating that vinasse does not induce mutations.
Conclusion: The importance of addressing vinasse pollution and treatment methods to reduce its toxicity is emphasised. However, further research is needed to fully understand the risks associated with vinasse exposure and to develop effective mitigation strategies.

|Abstract
= 65 veces | PDF
= 47 veces| | EPUB
= 2 veces|

Downloads

Download data is not yet available.

References

Sydney EB, Letti LA, Karp S G, Sydney AN, Vandenberghe LP, Carvalho JC, Woiciechowski AL, Medeiros PB, Soccol VT, Soccol CR. Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector, Bioresource Technology Reports. 2019;7:1002-34. DOI: https://doi.org/10.1016/j.biteb.2019.100234

UPME, “Biocombustibles en Colombia,” Ministerio de Minas y Energía, ed., Unidad de Planeación Minero Energética. 2009; p.22. DOI: http://www.upme.gov.co/docs/biocombustibles_colombia.pdf.

Laime EM, Fernandes PD, Oliveira DC de S, Freire E de A. Possibilidades tecnológicas para a destinação da vinhaça. R. Tróp. - Ci. agr. biol. 2011;5(3):16-29. DOI: https://doi.org/10.0000/rtcab.v5i3.260.

Chowdhary P, Raj A, Bharagava RN. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review, Chemosphere. 2018;194:229–246. DOI: http://dx.doi.org/10.1016/j.chemosphere.2017.11.163

Chowdhary P, Singh A, Chandra R, Kumar PS, Raj A, Bharagava. NR. Detection and identification of hazardous organic pollutants from distillery wastewater by GC-MS analysis and its phytotoxicity and genotoxicity evaluation by using Allium cepa and Cicer arietinum. Chemosphere. 2022;297:134123. DOI: https://doi.org/10.1016/j.chemosphere.2022.134123

Gamboa-España E, Mijangos-Cortes J, Barahona-Perez, L, Dominguez- Maldonado J, Hernandez-Zarate G, Alzategaviria, L. Vinasses: characterization and treatments. Waste Manag. Res. 2011;29:1235-50. DOI: https://doi.org/10.1177/0734242X10387313

Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS. Sugarcane vinasse: environmental implications of its use, Waste Manag. 2013; 33:2752–2761. DOI: http://dx.doi.org/10.1016/j.wasman.2013.09.005

Kumar S, Gopal K. Impact of distellery effluent on physiological consequences in the freshwater teleost Channa punctatus. Bull. Environ. Contam. Toxicol. 2001; 66: 617-622. DOI: https://doi.org/10.1007/s001280053

Santal, AR, Singh, NP, Saharan BS. A novel application of Paracoccus pantotrophus for the decolorization of melanoidins from distillery effluent under static conditions. J. Environ. Manag. 2016;169:78–83. DOI: https://doi.org/10.1016/j.jenvman.2015.12.016

Zhang M, Xie L, Wang Z, Lu X, Zhou Q. Using Fe(III)-coagulant-modified colloidal gas aphrons to remove bio-recalcitrant dissolved organic matter and colorants from cassava distillery wastewater. Bioresour. Technol. 2018; 268: 346–354. DOI: https://doi.org/10.1016/j.biortech.2018.08.010

Kumar V, Sharma DC. Distillery Effluent: pollution profile, eco-friendly treatment strategies: challenges and future prospects. In book: Microbial Metabolism of Xenobiotic Compounds (pp.337-357) Edition: FirstPublisher: Springer Nature Singapore; 2019; pp. 337–357. URL: https://link.springer.com/chapter/10.1007/978-981-13-7462-3_17

Oñate J, Arenas A, Ruiz A, Rivera K, Pelaez C. Evaluation of Mutagenic and Genotoxic Activity in Vinasses Subjected to Different Treatments. Water Air Soil Pollut. 2015; 226, 144. DOI: https://doi.org/10.1007/s11270-014-2250-0.

Correia JE, Christofoletti CA, Ansoar-Rodríguez Y, Guedes AT, Fontanetti CS. Comet assay and micronucleus tests on Oreochromis niloticus (Perciforme: Cichlidae) exposed to raw sugarcane vinasse and to phisicochemical treated vinasse by pH adjustment with lime (CaO). Chemosphere 2017;173:494-501. DOI: https://doi.org/10.1016/j.chemosphere.2017.01.025

Garcia CF, Souza RB, Souza CP, Christofoletti CA, Fontanetti CS. Toxicity of two effluents from agricultural activity: comparing the genotoxicity of sugar cane and orange vinasse. Ecotoxicol. Environ. Saf. 2017;142:216–221. DOI: https://doi.org/10.1016/j.ecoenv.2017.03.053

Marinho JF, Correia JE,. Marcato AC, Pedro-Escher J, Fontanetti CS. Sugar cane vinasse in water bodies: impact assessed by liver histopathology in tilapia, Ecotoxicol. Environ. Saf. 2014;110:239–245. DOI: http://dx.doi.org/10.1016/j.ecoenv.2014.09.010

Singh NP, McCoy MT, Tice RR & Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research. 1988;175(1):184-191. DOI: http://dx.doi.org/10.1016/0014-4827(88)90265-0

Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella-mammalian-microsome mutagenicity test. Mutat Res 1975; 31:347-64. DOI: https://doi.org/10.1016/0165-1161(75)90046-1

NTC3629. Norma técnica colombiana. Calidad del agua. demanda química de oxígeno (DQO). Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). 2021. URL: https://tienda.icontec.org/catalogsearch/result/?q=NTC+3629%3A2021

NTC5167. Norma técnica colombiana. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). 2011. URL: https://es.scribd.com/document/227264366/Norma-Tecnica-Colombiana-5167

Beltrán de Heredia AJ. Tratamiento de las aguas residuales de destilerías de vino mediante un proceso combinado delodos activos y oxidación química. Alimentacion Equipos y Tecnologia. 2005;198:55-59. URL: https://www.researchgate.net/publication/236841582

Novelo RI, Reyes RB, Borges ER and Riancho MR. Tratamiento de lixiviados por oxidación Fenton. Ingeniería e Investigación. 2010;30:80-85. URL: https://www.redalyc.org/pdf/643/64312498015.pdf

Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Ryu JC y Sasaki YF. Single Cell Gel/Comet Assay: Guidelines for In Vitro and In Vivo Genetic Toxicology Testing.Environ. Mol. Mutagen. 2000;35(3):206-21. DOI: https://doi.org/10.1002/(sici)1098-2280(2000)35:3%3C206::aid-m8%3E3.0.co;2-j

Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat. Res. Mutagen. Relat. Subj. 1983;113:173–215. DOI: https://doi.org/10.1016/0165-1161(83)90010-9

Oliveira NA, Juarez B, Eurides LA, Franco D, Baungarten LA, Araujo LB. Aislamiento, viabilidad y rendimiento de células mononucleares de médula ósea de conejos. Acta Bioquímica Clínica Latinoamericana. 2011;45(1)113-118. URL: https://www.redalyc.org/pdf/535/53519965007.pdf

Gutiérrez CL . Comparación de dos técnicas para la cuantificación de la viabilidad en células mononucleares de sangre periférica evaluadas en el Hospital IV Augusto Hernández Mendoza del distrito de Ica. Tesis de maestría, Universidad Alas Peruanas. 2017.

Cooper CE,. Nitric oxide and iron proteins. Biochimica et Biophysica Acta. 1999; 1411: 290-309. DOI: https://doi.org/10.1016/S0005-2728(99)00021-3

Murphy Michael. Nitric oxide and cell death. Biochimica et Biophysica Acta. 1999;1411(2-3):401-14. DOI: https://doi.org/10.1016/S0005-2728(99)00029-8

Glösl S, Wagner KH, Draxler A, Kaniak M, Lichtenecker S, Sonnleitner A, Somoza V, Erbersdobler H, Elmadfa I. Genotoxicity and mutagenicity of melanoidins isolated from a roasted glucose-glycine model in human lymphocyte cultures, intestinal Caco-2 cells and in the Salmonella typhimurium strains TA98 and TA102 applying the AMES test. Food Chem Toxicol. 2004;42(9):1487-95. DOI: https://doi.org/10.1016/j.fct.2004.04.011

Kim Ji-S, Young-Soon Lee. Effect of reaction pH on enolization and racemization reactions of glucose and fructose on heating with amino acid enantiomers and formation of melanoidins as result of the Maillard reaction, Food Chemistry. 2008; 108(2):582-592. DOI: https://doi.org/10.1016/j.fct.2004.04.011

Kwak EJ, Lee YS, Murata M, Homma S. Effect of pH control on the intermediates and melanoidins of nonenzymatic browning reaction. Food Science and Technology. 2005;38(1):1-6. DOI: https://doi.org/10.1016/j.lwt.2003.09.011

Yadav A, Raj A, Purchase D, Ferreira LF, Saratale GD, Bharagava RN. Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. Chemosphere. 2019;224:324-332. DOI: https://doi.org/10.1016/j.chemosphere.2019.02.124

Neuwirth C, Mosesso P, Pepe , Fiore M, Malfatti , Turteltaub K, Dekant W, Mall M. Furan carcinogenicity: DNA binding and genotoxicity of furan in rats in vivo. Molecular Nutrition & Food Research. 2012;56(9); 1363-1374. DOI: https://doi.org/10.1002/mnfr.201200226

Moser GJ, Foley J, Burnett M, Goldsworthy, TL, Maronpot R. Furan induced dose-response relationships for liver cytotoxicity, cell proliferation, and tumorigenicity (furan-induced liver tumorigenicity). Exp. Toxicol. Pathol. 2009; 61:101-111. DOI: https://doi.org/10.1016/j.etp.2008.06.006

Johansson E, Reynolds S, Anderson M, Maronpot R. Frequency of Ha-ras-1 gene mutations inversely correlated with furan dose in mouse liver tumors. Mol. Carcinog. 1997;18:199-205. DOI: https://doi.org/10.1002/(SICI)1098-2744(199704)18:4%3C199::AID-MC3%3E3.0.CO;2-9

Gramo EA y Amirtharajah A. Eliminando color causado por húmico ácidos. J. AWWA 1985, 77(3), 50–57. DOI: https://doi.org/10.1002/j.1551-8833.1985.tb05508.x

Sayato Y, Nakamuro K. Ueno H. Goto R. Identification of polycyclic aromatic hydrocarbons in mutagenic adsorbates to a copper-phthalocyanine derivative recovered from municipal river water, Mutation Research/Genetic Toxicology. 1993;300(3–4):207-213. DOI: https://doi.org/10.1016/0165-1218(93)90052-F.

White PA. The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutat Res. 2002;515(1-2):85-98. DOI: https://doi.org/10.1016/S1383-5718(02)00017-7

Alabi, OA. Comparative chemical analysis, mutagenicity, and genotoxicity of Petroleum refinery wastewater and its contaminated river using prokaryotic and eukaryotic assays. Protoplasma. 2023;260:89–101. DOI: https://doi.org/10.1007/s00709-022

Xu Q, Tao W, Ao Z., 2017 Antioxidant activity of vinegar melanoidins. Food Chemistry. 2007;102:841–849. DOI: https://doi.org/10.1016/j.foodchem.2006.06.013

Parnaudeau V, Condom N, Oliver R, Cazevieille P & Recous S. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresource Technology. 2008;99:1553–1562. DOI: https://doi.org/10.1016/j.biortech.2007.04.012

Corrêa NM, Souza V, Souza TS. Genotoxic and mutagenic effects of sewage sludge on higher plants, Ecotoxicology and Environmental Safety. 2016; 24:489-496. DOI: https://doi.org/10.1016/j.ecoenv.2015.11.031

Downloads

Published

23-11-2024

How to Cite

Meléndez Gélvez, I., Salazar Moncada, D. A., Granados Vega, E. J., Soledad Maldonado, J. C., & Peláez Jaramillo, C. A. (2024). Genotoxic and Mutagenic Assessment Induced by Vinasse, Before and After Being Subjected to Bio-oxidation and Fenton Processes. Vitae, 31(2). https://doi.org/10.17533/udea.vitae.v31n2a357688

Issue

Section

Pharmacology and Toxicology

Most read articles by the same author(s)