Cytotoxicity evaluation of new styrylquinoline analogues In leukemoid Jurkat cells

Authors

  • Andrés F. Soto-López Universidad de Antioquia
  • Juan P. Meneses Universidad de Antioquia
  • Jairo Sáez-Vega Universidad de Antioquia
  • Mauricio Camargo Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.acbi.14292

Keywords:

Jurkat, leukemia, MTT, S9 styrylquinoline, viability

Abstract

Some of the most commonly used and effective drugs used in antileukemic treatments posses principal chemical structures with quinoline rings and/or styrene groups, which might suggest that analogous compounds may serve as potential new antiproliferative agents. Recently, one of our laboratories synthesised six new styrylquinoline analogues as candidates for having antiproliferative and/or anti-cancer effects. Thus, using the MTT assay we evaluated the cytotoxicity of these six compounds in the leukemoid cell line Jurkat. The results showed an absence of cytotoxic effects at the concentrations and times assayed. In addition, when the treatments were applied in the presence of S9 microsomal fraction, cell viability was not altered in this leukemoid in vitro model. These results open the possibility of evaluating these styrylquinolines in other cell lines or diseases models with the goal of examining promising biomedical effects.

|Abstract
= 172 veces | PDF (ESPAÑOL (ESPAÑA))
= 113 veces|

Downloads

Author Biographies

Andrés F. Soto-López, Universidad de Antioquia

Population Genetics and Mutacarcinogenesis Group. Institute of Biology, Universidad de Antioquia. A. A. 1226. Medellín
(Antioquia), Colombia.

Juan P. Meneses, Universidad de Antioquia

Chemical Group of Colombian Plants. Institute of chemistry.Universidad de Antioquia. A. A. 1226. Medellín (Antioquia),
Colombia

Jairo Sáez-Vega, Universidad de Antioquia

Population Genetics and Mutacarcinogenesis Group. Institute of Biology, Universidad de Antioquia. A. A. 1226. Medellín
(Antioquia), Colombia

Mauricio Camargo, Universidad de Antioquia

Population Genetics and Mutacarcinogenesis Group. Institute of Biology, Universidad de Antioquia. A. A. 1226. Medellín
(Antioquia), Colombia
Teacher. Institute of Biology, Universidad de Antioquia. A. A. 1226. Medellín (Antioquia), Colombia.

References

Cortes JE, Kantarjian HM. 1995. Acute lymphoblastic leukemia. Cancer, 76 (12): 2393-2417.

Danizot F, Lang R. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89 (2): 271-277.

Hirano Y, Uehara M, Saeki K, Kato T, Takahashi K, Miztutani T. 2002. The influence of quinolines on coumarine 7-hydroxylation in bovine liver microsomes and human CYP2A6. Journal of Health Sciences 48 (2): 118-125.

Hranjec M, Kralj M, Piantanida I, Sedic M, Suman L, Pavelic K, Karminski-Zamola G. 2007. Novel cyano- and amidino-substituted derivatives of styryl-2- benzimidazoles and benzimidazo [1, 2-a] quinolines. Synthesis, photochemical synthesis, DNA binding,

and antitumor evaluation, part 3. Journal of Medicinal Chemistry, 50 (23): 5696-5711.

Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER, Van Der Does-Van Den Berg A. 1997. In vitro cellular drug resistance and prognosisin newly diagnosed childhood acute lymphoblastic leukemia. Blood, 90 (7): 2723-2729.

Kim Y, Shin K, Lee T, Kim E, Lee M, Ryu S, Suh P. 2005. G2 arrest and apoptosis by 2-amino-N-quinoline-8-yl-benzenesulfonamide (QBS), a novel cytotoxic compound. Biochemical Pharmacology, 69 (9): 1333-1341.

Knasmüller S, Majer BJ, Kassie F, Sasaki Y, Pfauc W, Glatt H, Meinl W, Darroudi F. 2004. Investigation of the genotoxic effects of 2-amino-9H-pyrido[2,3-b]indole in different organs of rodents and in human derived cells. Journal of Chromatography B, 802 (1): 167-173.

Lebsanft J, McMahon JB, Steinmann GG, Shoemaker RH. 1989. A rapid in vitro method for the evaluation of potential antitumor drugs requiring metabolic activation by hepatic s9 enzymes. Biochemical Pharmacology, 38 (24): 4477-4483.

Lee E, Min H, Park H, Chung H, Kim S, Han Y, Lee S. 2004. G2/M cell cycle arrest and induction of apoptosis by a stilbenoid, 3, 4, 5-trimethoxy-4’-bromo-cis-stilbene, in human lung cancer cells. Life Sciences, 75 (23): 2829-2839.

Martirosyan AR, Rahim-Bata R, Freeman AB, Clarke CD, Howard RL, Strobl JS. 2004. Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer model. Biochemical Pharmacology, 68 (9): 1729-1738.

MusiolR,Jampilek J,KralovaK,RichardsonDR,Kali•nowski D, Podeszwa B, Finster J, Niedbala H, Palka A, Polanski J. 2007. Investigating biological activity spectrum for novel quinoline analogues. Bioorganic and Medicinal Chemistry, 15 (3): 1280-1288.

Reigh G, McMahon H, Ishizaki M, Ohara T, Shimane K, Esumi Y, Green C, Tyson C, Ninomiya S. 1996. Cytochrome P450 species involved in the metabolism of quinoline. Carcinogenesis 17 (9): 1989-1996.

Soto-Cerrato V, Montaner B, Martinell M, Vilaseca M, Giralt E, Pérez R. 2005. Cell cycle arrest and proapoptotic effects of the anticancer cyclodepsipeptide serratamolide (AT514) are independent of p53 status in breast cancer cells. Biochemical Pharmacology, 71 (1-2): 32-41.

Vezmar M, Georges E. 2000. Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochemical Pharmacology, 59 (10): 1245-1252.

Vieira NC, Herrenknecht C, Vacus J, Fournet A, Bories C, Figadere B, Espindola LS, Loiseau PM. 2008. Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical

trials. Biomedicine and Pharmacotherapy, 62 (10): 684-689.

Volkova T, Zykina N, Malycheva I, Nemova N. 2007. Cell mechanisms for apoptosis induction in K562 human erythroleukemia cell line treated with quinoline-N-oxide derivatives. Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry, 1 (1): 82-86.

Yoshie H, Mayumi U, Ken-ichi S, Taka-aki K, Kazuhiko T, Takaharu M. 2002. The influenze of quinolines on coumarin 7-hydroxylation in bovine liver microsomes and human CYP2A6. Journal of Health Sciences, 48 (2): 118-125.

Zhang H, Kasibhatla S, Wang Y, Herich J, Guastella, J, Tseng B, Drewe J, Cai S. 2004. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorganic and Medicinal Chemistry, 12 (2): 309-317.

Published

2017-10-26

How to Cite

Soto-López, A. F., Meneses, J. P., Sáez-Vega, J., & Camargo, M. (2017). Cytotoxicity evaluation of new styrylquinoline analogues In leukemoid Jurkat cells. Actualidades Biológicas, 33(95), 165–172. https://doi.org/10.17533/udea.acbi.14292

Issue

Section

Full articles
Crossref
0
Scopus
0

Most read articles by the same author(s)

1 2 > >>