Evaluación de citotoxicidad de nuevos análogos de estirilquinolinas en células leucemoides Jurkat

Autores

  • Andrés F. Soto-López Universidad de Antioquia.
  • Juan P. Meneses Universidad de Antioquia.
  • Jairo Sáez-Vega Universidad de Antioquia.
  • Mauricio Camargo Universidad de Antioquia.

DOI:

https://doi.org/10.17533/udea.acbi.14292

Palavras-chave:

estirilquinolina, Jurkat, leucemia, MTT, viabilidad

Resumo

Algunas de las drogas más usadas y efectivas en los tratamientos antileucémicos poseen como estructura química principal anillos de quinolina y grupos estireno, lo que podría sugerir que compuestos análogos a estos servirían como posibles nuevos agentes antiproliferativos. Recientemente, uno de nuestros laboratorios sintetizó 6 nuevos análogos de estirilquinolina, candidatas para efectos antiproliferativos y/o anticancerígenos. Así, mediante el ensayo colorimétrico (MTT) se evaluó la citotoxicidad de los seis compuestos en la línea celular Jurkat de origen leucemoide. Los resultados muestran ausencia de efecto citotóxico en las concentraciones y tiempos evaluados. Además, cuando los tratamientos fueron aplicados en presencia de la fracción microsomal S9, no se alteró la viabilidad en este modelo celular leucemoide in vitro. Queda abierta la posibilidad de evaluar estas estirilquinolinas en otras líneas celulares y/o que representen otro modelo de enfermedades, con miras a tamizar efectos biomédicos promisorios.

|Resumo
= 211 veces | PDF (ESPAÑOL (ESPAÑA))
= 144 veces|

Downloads

Não há dados estatísticos.

Biografia do Autor

Andrés F. Soto-López, Universidad de Antioquia.

Grupo Genética de Poblaciones y Mutacarcinogénesis. Instituto de Biología, Universidad de Antioquia. A. A. 1226. Medellín
(Antioquia), Colombia.

Juan P. Meneses, Universidad de Antioquia.

Grupo química de Plantas Colombianas. Instituto de química. Universidad de Antioquia. A. A. 1226. Medellín (Antioquia),
Colombia

Jairo Sáez-Vega, Universidad de Antioquia.

Grupo Genética de Poblaciones y Mutacarcinogénesis. Instituto de Biología, Universidad de Antioquia. A. A. 1226. Medellín
(Antioquia), Colombia

Mauricio Camargo, Universidad de Antioquia.

Grupo Genética de Poblaciones y Mutacarcinogénesis. Instituto de Biología, Universidad de Antioquia. A. A. 1226. Medellín
(Antioquia), Colombia
Docente. Instituto de Biología, Universidad de Antioquia. A. A. 1226. Medellín (Antioquia), Colombia.

Referências

Cortes JE, Kantarjian HM. 1995. Acute lymphoblastic leukemia. Cancer, 76 (12): 2393-2417. DOI: https://doi.org/10.1002/1097-0142(19951215)76:12<2393::AID-CNCR2820761203>3.0.CO;2-P

Danizot F, Lang R. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89 (2): 271-277. DOI: https://doi.org/10.1016/0022-1759(86)90368-6

Hirano Y, Uehara M, Saeki K, Kato T, Takahashi K, Miztutani T. 2002. The influence of quinolines on coumarine 7-hydroxylation in bovine liver microsomes and human CYP2A6. Journal of Health Sciences 48 (2): 118-125.

Hranjec M, Kralj M, Piantanida I, Sedic M, Suman L, Pavelic K, Karminski-Zamola G. 2007. Novel cyano- and amidino-substituted derivatives of styryl-2- benzimidazoles and benzimidazo [1, 2-a] quinolines. Synthesis, photochemical synthesis, DNA binding, DOI: https://doi.org/10.1021/jm070876h

and antitumor evaluation, part 3. Journal of Medicinal Chemistry, 50 (23): 5696-5711.

Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER, Van Der Does-Van Den Berg A. 1997. In vitro cellular drug resistance and prognosisin newly diagnosed childhood acute lymphoblastic leukemia. Blood, 90 (7): 2723-2729. DOI: https://doi.org/10.1182/blood.V90.7.2723

Kim Y, Shin K, Lee T, Kim E, Lee M, Ryu S, Suh P. 2005. G2 arrest and apoptosis by 2-amino-N-quinoline-8-yl-benzenesulfonamide (QBS), a novel cytotoxic compound. Biochemical Pharmacology, 69 (9): 1333-1341. DOI: https://doi.org/10.1016/j.bcp.2004.12.019

Knasmüller S, Majer BJ, Kassie F, Sasaki Y, Pfauc W, Glatt H, Meinl W, Darroudi F. 2004. Investigation of the genotoxic effects of 2-amino-9H-pyrido[2,3-b]indole in different organs of rodents and in human derived cells. Journal of Chromatography B, 802 (1): 167-173. DOI: https://doi.org/10.1016/j.jchromb.2003.10.042

Lebsanft J, McMahon JB, Steinmann GG, Shoemaker RH. 1989. A rapid in vitro method for the evaluation of potential antitumor drugs requiring metabolic activation by hepatic s9 enzymes. Biochemical Pharmacology, 38 (24): 4477-4483. DOI: https://doi.org/10.1016/0006-2952(89)90659-X

Lee E, Min H, Park H, Chung H, Kim S, Han Y, Lee S. 2004. G2/M cell cycle arrest and induction of apoptosis by a stilbenoid, 3, 4, 5-trimethoxy-4’-bromo-cis-stilbene, in human lung cancer cells. Life Sciences, 75 (23): 2829-2839. DOI: https://doi.org/10.1016/j.lfs.2004.07.002

Martirosyan AR, Rahim-Bata R, Freeman AB, Clarke CD, Howard RL, Strobl JS. 2004. Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer model. Biochemical Pharmacology, 68 (9): 1729-1738. DOI: https://doi.org/10.1016/j.bcp.2004.05.003

MusiolR,Jampilek J,KralovaK,RichardsonDR,Kali•nowski D, Podeszwa B, Finster J, Niedbala H, Palka A, Polanski J. 2007. Investigating biological activity spectrum for novel quinoline analogues. Bioorganic and Medicinal Chemistry, 15 (3): 1280-1288. DOI: https://doi.org/10.1016/j.bmc.2006.11.020

Reigh G, McMahon H, Ishizaki M, Ohara T, Shimane K, Esumi Y, Green C, Tyson C, Ninomiya S. 1996. Cytochrome P450 species involved in the metabolism of quinoline. Carcinogenesis 17 (9): 1989-1996. DOI: https://doi.org/10.1093/carcin/17.9.1989

Soto-Cerrato V, Montaner B, Martinell M, Vilaseca M, Giralt E, Pérez R. 2005. Cell cycle arrest and proapoptotic effects of the anticancer cyclodepsipeptide serratamolide (AT514) are independent of p53 status in breast cancer cells. Biochemical Pharmacology, 71 (1-2): 32-41. DOI: https://doi.org/10.1016/j.bcp.2005.10.020

Vezmar M, Georges E. 2000. Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochemical Pharmacology, 59 (10): 1245-1252. DOI: https://doi.org/10.1016/S0006-2952(00)00270-7

Vieira NC, Herrenknecht C, Vacus J, Fournet A, Bories C, Figadere B, Espindola LS, Loiseau PM. 2008. Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical DOI: https://doi.org/10.1016/j.biopha.2008.09.002

trials. Biomedicine and Pharmacotherapy, 62 (10): 684-689.

Volkova T, Zykina N, Malycheva I, Nemova N. 2007. Cell mechanisms for apoptosis induction in K562 human erythroleukemia cell line treated with quinoline-N-oxide derivatives. Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry, 1 (1): 82-86. DOI: https://doi.org/10.1134/S199075080701012X

Yoshie H, Mayumi U, Ken-ichi S, Taka-aki K, Kazuhiko T, Takaharu M. 2002. The influenze of quinolines on coumarin 7-hydroxylation in bovine liver microsomes and human CYP2A6. Journal of Health Sciences, 48 (2): 118-125. DOI: https://doi.org/10.1248/jhs.48.118

Zhang H, Kasibhatla S, Wang Y, Herich J, Guastella, J, Tseng B, Drewe J, Cai S. 2004. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorganic and Medicinal Chemistry, 12 (2): 309-317. DOI: https://doi.org/10.1016/j.bmc.2003.11.013

Publicado

2017-10-26

Como Citar

Soto-López, A. F., Meneses, J. P., Sáez-Vega, J., & Camargo, M. (2017). Evaluación de citotoxicidad de nuevos análogos de estirilquinolinas en células leucemoides Jurkat. Actualidades Biológicas, 33(95), 165–172. https://doi.org/10.17533/udea.acbi.14292

Edição

Seção

Artigos completos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>