Seroincidencia de anticuerpos IgG del SARS-CoV-2 y factores de riesgo en trabajadores sanitarios asintomáticos del Hospital Departamental de Villavicencio

Autores/as

DOI:

https://doi.org/10.17533/udea.rfnsp.e346034

Palabras clave:

enfermedad por Coronavirus 2019 (COVID-19), inmunoglobulina clase G (IgG), pandemia, Coronavirus 2 asociado al síndrome respiratorio agudo severo (SARS-CoV-2), ELISA indirecto.

Resumen


Objetivo: Estimar la seroincidencia acumulada de inmunoglobulinas (Ig) clase G (IgG) anti-SARS-CoV-2 en trabajadores de la salud asintomáticos y su asociación epidemiológica dentro de las áreas funcionales del Hospital Departamental de Villavicencio (HDV).

Metodología: Se llevó a cabo un estudio observacional analítico longitudinal de una cohorte de trabajadores, donde cada 21 días, en tres oportunidades, se midieron IgG anti-SARS-CoV-2 en suero sanguíneo, a través de ELISA indirecto, en una muestra representativa aleatoria (n = 105) de trabajadores sanitarios del hospital (N = 756). Como instrumento de recolección de datos se utilizó una encuesta, donde cada trabajador sanitario declaró no haber sido diagnosticado con COVID-19, e igualmente registró la información sobre las variables independientes: sexo, edad, condición laboral, área funcional y comorbilidades.

Resultados: La prevalencia inicial para SARS-CoV-2 entre los trabajadores sanitarios asintomáticos del HDV fue de 9,52 % (IC 95 % 5,25-16,65). La seroincidencia acumulada durante 42 días fue de 12,38 % (IC 95 % 7,38-20,04). El riesgo relativo (RR) se utilizó para establecer los factores de riesgo asociados a las variables independientes. El sexo masculino (RR ajustado = 3,34, IC 95 % 1,98-5,86), obesidad (RR ajustado = 10,98, IC 95 % 1,41-85,98) y sexo femenino (RR ajustado = 2,15, IC 95 % 1,12-4,31) en las áreas funcionales de Hospitalización, Medicina Crítica y Urgencias, respectivamente, son factores de riesgo en el HDV.

Conclusión: Un total de 13 de 105 trabajadores sanitarios del hospital seroconvirtieron positivamente para SARS-CoV-2 y fueron asintomáticos durante 42 días de seguimiento epidemiológico. Además, existen factores de riesgo importantes en su exposición a este virus en el HDV.

|Resumen
= 196 veces | PDF
= 110 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect Genet Evol. 2020;79:104211. doi: https://doi.org/10.1016/j.meegid.2020.104211

World Health Organization. who Director-General’s opening remarks at the media briefing on covid-19 - 11 March 2020 [internet]. 2020 [citado 2021 ene. 21]. Disponible en: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708-20. doi: https://doi.org/10.1056/nejmoa2002032

Mizumoto K, Kagaya K, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (covid-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan. Euro Surveill. 2020;25(10):2000180. doi: https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

Garcia-Basteiro A, Moncunill G, Tortajada M, et al. Seroprevalence of antibodies against sars-CoV-2 among health care workers in a large Spanish reference hospital. Nat Commun. [internet]. 2020 [citado 2021 mar. 20]; 11;3500. doi: https://doi.org/10.1038/s41467-020-17318-x

Long Q, Tang X, Shi Q, et al. Clinical and immunological assessment of asymptomatic sars-CoV-2 infections. Nat Med. 2020;26:1200-4. doi: https://doi.org/10.1038/s41591-020-0965-6

Oran D, Topol E. Prevalence of asymptomatic sars-CoV-2 infection. Ann Intern Med. 2020;173(5):362-7. doi: https://doi.org/10.7326/M20-3012

Gudbjartsson D, Helgason A, Jonsson H, al. Spread of sars-CoV-2 in the Icelandic population. N Engl J Med. [internet]. 2020 [citado 2021 ene. 21]; 382:2302-15. doi: https://doi.org/10.1056/NEJMoa2006100

Ing A, Cocks C, Green J. covid-19: In the footsteps of Ernest Shackleton. Thorax. 2020;75(8):693-4. doi: http://dx.doi.org/10.1136/thoraxjnl-2020-215091

Instituto Nacional de Salud. Bogotá: covid-19 en personal de salud en Colombia. Boletín. 2021 [internet]; (92) [citado 2021 may. 27]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/coronavirus-personal-salud.aspx

Chen Y, Tong X, Jian Wang J, et al. High sars-CoV-2 antibody prevalence among healthcare workers exposed to covid-19 patients. J Infect. 2020;81(3):420-6. doi: https://doi.org/10.1016/j.jinf.2020.05.067

Rivett L, Sridhar S, Sparkes D, et al. Screening of healthcare workers for sars-CoV-2 highlights the role of asymptomatic carriage in covid-transmission. eLife. [internet]. 2020 [citado 2021 mar. 15]; 9:e58728. doi: https://doi.org/10.7554/eLife.58728

Franco M, Ariza B, Torres T, et al. Seroprevalence and seroconversion rates to sars-CoV-2 in interns, residents, and medical doctors in a University Hospital in Bogotá, Colombia. Infectio. 2021;25(3):145-52. doi: http://dx.doi.org/10.22354/in.v25i3.938

Instituto Nacional de Salud de Colombia y Grupo Colaborativo Estudio País. Seroprevalencia de sars-CoV-2 durante la epidemia en Colombia: estudio país. Reporte preliminar No. 2. Resultados globales Leticia, Barranquilla, Medellín, Bucaramanga, Cúcuta, Villavicencio, Cali, Bogotá, Ipiales, Guapí [internet]. 2020 [citado 2021 may. 27]. Disponible en: https://www.ins.gov.co/BibliotecaDigital/Seroprevalencia-Colombia-reporte-preliminar-n-2.pdf

Centros para el Control y la Prevención de Enfermedades cdc. Atlanta: Epi InfoTM. [internet]; 2019 [citado 2021 may. 27]. Disponible en: https://www.cdc.gov/epiinfo/esp/es_index.html

Creative Diagnostics®. sars-CoV-2 elisa Kit (deiasl019) [internet]; s. f. [citado 2021 may. 27]. Disponible en: http://img2.creative-diagnostics.com/pdf/DEIASL019.pdf

Asociación Médica Mundial [internet]. Ferney-Voltaire. Declaración de Helsinki de la amm – Principios éticos para las investigaciones médicas en seres humanos [internet]; 2017 [citado 2021 may. 27]. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/

Colombia, Ministerio de Salud. Resolución 008430, por la cual se establecen las normas científicas, técnicas y administrativas para la administración en salud (1993 octubre 4).

Zhao J, Yuan Q, Wang H, et al. Antibody responses to sars-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis. 2020;71(16):2027-34. doi: https://doi.org/10.1093/cid/ciaa344

Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel coronavirus disease (covid-19). Clin Infect Dis. 2020;71(15):778-85. doi: https://doi.org/10.1093/cid/ciaa310

Milani G, Dioni L, Favero C, et al. Serological follow-up of sars-CoV-2 asymptomatic subjects. Sci Rep. 2020;10:20048. doi: https://doi.org/10.1038/s41598-020-77125-8

Dan J, Mateus J, Kato Y, et al. Immunological memory to sars-CoV-2 assessed for up to 8 months after infection. Science. 2021;371(6529):eabf4063. doi: https://doi.org/10.1126/science.abf4063

Pallett S, Rayment M, Patel A, et al. Point-of-care serological assays for delayed sars-CoV-2 case identification among health-care workers in the uk: A prospective multicentre cohort study. Lancet Respir Med. 2020;8(9):885-94. doi: https://doi.org/10.1016/S2213-2600(20)30315-5

Shields A, Faustini S, Perez-Toledo M, et al. sars-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: A cross-sectional study. Thorax. [internet]. 2020 [citado 2021 feb. 22]; 75(12):1089-94. doi: https://doi.org/10.1136/thoraxjnl-2020-215414

Lumley S, O’Donnell D, Stoesser N, et al. Antibody status and incidence of sars-CoV-2 infection in health care workers. N Engl J Med. 2021;384(5):533-40. doi: https://doi.org/10.1056/NEJMoa2034545

Instituto Nacional de Salud. Bogotá: covid-19 en Colombia. Distribución de casos por departamento [internet]; 2021 [citado 2021 may. 27]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/coronavirus-departamento.aspx

Schneider S, Piening B, Nouri-Pasovsky P, et al. sars-Coronavirus-2 cases in healthcare workers may not regularly originate from patient care: Lessons from a university hospital on the underestimated risk of healthcare worker to healthcare worker transmission. Antimicrob Resist Infect Control. [internet]. 2020 [citado 2021 mar. 08]; 9;192. doi: https://doi.org/10.1186/s13756-020-00848-w

Schwierzeck V, Correa‐Martinez C, Schneider K, et al. sars‐CoV‐2 in the employees of a large university hospital. Dtsch Arztebl Int. 2020;117(19):344-5. doi: https://doi.org/10.3238/arztebl.2020.0344

Rudberg A, Havervall S, Månberg A, et al. sars-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat Commun. [internet]. 2020 [citado 2021 mar. 20]; 11:5064. doi: https://doi.org/10.1038/s41467-020-18848-0

Zhang S, Guo M, Wu F, et al. Factors associated with asymptomatic infection in health-care workers with severe acute respiratory syndrome coronavirus 2 infection in Wuhan, China: A multicentre retrospective cohort study. Clinical Microb Infect. 2020;26(12):1670-5. doi: https://doi.org/10.1016/j.cmi.2020.08.038

Yang L, Li-Meng Y, Lagen W, et al. Viral dynamics in mild and severe cases of covid-19. The Lancet Infect Dis. 2020;20(6):656-7. doi: https://doi.org/10.1016/S1473-3099(20)30232-2

Michalakis K, Ilias I. sars-CoV-2 infection and obesity: Common inflammatory and metabolic aspects. Diabetes Metab Syndr. 2020;14(4):469-71. doi: https://doi.org/10.1016/j.dsx.2020.04.033

Vahidy F, Pan A, Ahnstedt H, et al. Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis from a diverse us metropolitan area. plos one [internet]. 2021 [citado 2021 abr. 15]; 16(1):e0245556. doi: https://doi.org/10.1371/journal.pone.0245556

Zeng F, Dai C, Cai P, et al. A comparison study of sars‐CoV‐2 IgG antibody between male and female covid‐19 patients: A possible reason underlying different outcome between sex. J Med Virol. 2020;92(10):2050-4. doi: https://doi.org/10.1002/jmv.25989

Subramanian A, Anand A, Adderley N, et al. Increased covid-19 infections in women with polycystic ovary syndrome: A population-based study. Eur. J. Endocrinol. 2021;184(5):637-45. doi: https://doi.org/10.1530/EJE-20-1163

Moazzami B, Chaichian S, Samie S, et al. Does endometriosis increase susceptibility to covid-19 infections? A case–control study in women of reproductive age. bmc Women’s Health. 2021;21,119. doi: https://doi.org/10.1186/s12905-021-01270-z

Pivonello R, Auriemma R, Pivonello C, et al. Sex disparities in covid-19 severity and outcome: Are men weaker or women stronger? Neuroendocrinology [internet]. 2020 [citado 2021 may. 28]; 1-20. doi: https://doi.org/10.1159/000513346

Reynolds C, Swadling L, Gibbons J, et al. Discordant neutralizing antibody and T cell responses in asymptomatic and mild sars-CoV-2 infection. Sci. Immunol [internet]. 2020 [citado 2021 abr. 16]; 5(54):eabf3698. doi: https://immunology.sciencemag.org/content/5/54/eabf3698

Descargas

Publicado

2022-02-27

Cómo citar

1.
Lesmes Rodriguez LC, Velandia-Bobadilla DJ, Jaramillo-Hernández DA. Seroincidencia de anticuerpos IgG del SARS-CoV-2 y factores de riesgo en trabajadores sanitarios asintomáticos del Hospital Departamental de Villavicencio. Rev. Fac. Nac. Salud Pública [Internet]. 27 de febrero de 2022 [citado 30 de junio de 2022];40(2):e346034. Disponible en: https://revistas.udea.edu.co/index.php/fnsp/article/view/346034

Número

Sección

Condiciones de salud

Artículos similares

1 2 3 4 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.