Obesidad y su asociación con el consumo de alimentos ultraprocesados en adultos mayores en Roraima, Brasil
DOI:
https://doi.org/10.17533/udea.rfnsp.e358188Palabras clave:
envejecimiento, adiposidad, comportamento alimentario, servicios de salud, factores de riesgoResumen
Objetivo: Estimar la prevalencia de la obesidad y analizar su asociación con el consumo de alimentos ultraprocesados (AUP) en adultos mayores en la atención primaria de salud.
Métodos: En este estudio transversal participaron 1322 adultos mayores de Roraima, Brasil. La obesidad se determinó mediante el índice de masa corporal, calculado a partir de mediciones de peso y altura. El consumo de AUP se evaluó con un formulario de marcador dietético utilizado a nivel nacional en la atención primaria. También se recopilaron datos sociodemográficos.
Resultados: La prevalencia de obesidad fue del 14%, y siete de cada diez adultos mayores reportaron haber consumido al menos un tipo de AUP el día anterior. Los adultos mayores que consumieron hamburguesas y carnes procesadas (aOR = 1,50; IC 95% = 1,08–2,08; p = 0,016) y aquellos que consumieron dulces y golosinas (aOR = 1,38; IC 95% = 1,02–1,80; p = 0,046) tuvieron mayor probabilidad de ser obesos en comparación con aquellos que no consumieron AUP.
Conclusión: Aunque la obesidad afecta a una parte significativa de los adultos mayores, el consumo de AUP es frecuente entre ellos. Reducir el consumo de AUP, especialmente hamburguesas, carnes procesadas, dulces y golosinas, es esencial para promover la longevidad y la calidad de vida en la vejez.
Descargas
Citas
1. Abeso. Associação Brasileira para o Estudo da Obesidade e Síndrome Metabólica [internet]. 2022 [Retrieved sep. 17, 2024]. Available from: https://abeso.org.br/obesidade-e-sindrome-metabolica/mapa-da-obesidade/
2. Ludwig DS, Apovian CM, Aronne LJ, Astrup A, Cantley LC, Ebbeling CB, et al. Competing paradigms of obesity pathogenesis: energy balance versus carbohydrate-insulin models. Eur J Clin Nutr. 2022;76(9):1209-21. https://doi.org/10.1038/s41430-022-01179-2
3. Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol. 2020;49(3):810-23. https://doi.org/10.1093/ije/dyz273
4. Janssen F, Bardoutsos A, Vidra N. Obesity prevalence in the long-term future in 18 European countries and in the USA. Obes Facts. 2020;13(5):514-27. https://doi.org/10.1159/000511023
5. Pinheiro MC, Moura ALP, Bortolini GA, Coutinho JG, Rahal LS, Bandeira LM, et al. Abordagem intersetorial para prevenção e controle da obesidade: a experiência brasileira de 2014 a 2018. Rev Panam Salud Pública 2019;43:e58. https://doi.org/10.26633/RPSP.2019.58
6. Okunogbe A, Nugent R, Spencer G, Powis J, Ralston J, Wilding J. Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Glob Health. 2022;7:e009773. https://doi.org/10.1136/bmjgh-2022-009773
7. Daniels NF, Burrin C, Chan T, Fusco F. A systematic review of the impact of the first year of COVID-19 on obesity risk factors: a pandemic fueling a pandemic?. Curr Dev Nutr. 2022:6(4):nzac011. https://doi.org/10.1093/cdn/nzac011
8. Ribeiro GJS, Mendes AE, Costa EA, Carvalho DV. Trends in food consumption by adults in a Brazilian northeastern state. J Taibah Uni Med Sci. 2023;18:1261-7. https://doi.org/10.1016/j.jtumed.2023.04.008
9. Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada ML, Jaime PC. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21:5-17. https://doi.org/10.1017/S1368980017000234
10. Louzada ML, Steele EM, Rezende LF, Levy RB, Monteiro CA. Changes in obesity prevalence attributable to ultra-processed food consumption in Brazil between 2002 and 2009. Int J Public Health. 2022;67:1604103. https://doi.org/10.3389/ijph.2022.1604103
11. Silva DC, Ferreira FG, Pereira DL, Magalhães EL, Longo GZ. Degree of food processing and its relationship with overweight and body adiposity in Brazilian adults. Rev Nutr. 2021;34:e200135. https://doi.org/10.1590/1678-9865202134e200135
12. Estivaleti JM, Guzman-Habinger J, Lobos J, Azeredo CM, Claro R, Ferrari G, et al. Time trends and projected obesity epidemic in Brazilian adults between 2006 and 2030. Sci Rep. 2022;12(1):12699. https://doi.org/10.1038/s41598-022-16934-5
13. Louzada ML, Cruz GL, Silva KA, Grassi AG, Andrade GC, Rauber F, et al. Consumption of ultra-processed foods in Brazil: distribution and temporal evolution 2008–2018. Rev Saude Publica. 2023;57:12. https://doi.org/10.11606/s1518-8787.2023057004744
14. Mendonça RD, Pimenta AM, Gea A, Fuente-Arrillaga C, Martinez-Gonzalez MA, Lopes AC, et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr. 2016;104:1433-40. https://doi.org/10.3945/ajcn.116.135004
15. Srour B, Fezeu LK, Kesse-Guyot E, Alles B, Debras C, Druesne-Pecollo N, et al. Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern Med. 2020;180:283-91. https://doi.org/10.1001/jamainternmed.2019.5942
16. Ribeiro GJR, Nobre LN, Santos GS, Moriguchi EM, Pinto AA. Association between heart failure and consumption of ultra-processed foods in older adults: a cross-sectional study. Rev Bras Geriatr Gerontol. 2024, 27. https://doi.org/10.1590/1981-22562024027.240020.en
17. Ribeiro GJS, Moriguchi EH, Pinto AA. Association between hypercholesterolemia and isolated and simultaneous consumption of ultra-processed foods in older adults. Journal of Public Health Research. 2024;13(3):22799036241277726. https://doi.org/10.1177/22799036241277726
18. De Nucci S, Zupo R, Castellana F, Sila A, Triggiani V, Lisco G, et al. Public Health Response to the SARS-CoV-2 Pandemic: Concern about Ultra-Processed Food Consumption. Foods. 2022;11:950. https://doi.org/10.3390/foods11070950
19. Zupo R, Castellana F, Sardone R, Sila A, Giagulli VA, Triggiani V, et al. Preliminary Trajectories in Dietary Behaviors during the COVID-19 Pandemic: A Public Health Call to Action to Face Obesity. Int J Environ Res Public Health. 2020;17:7073. https://doi.org/10.3390/ijerph17197073]
20. Ribeiro GJS, Moriguchi EH, Pinto AA. Clustering of Cardiovascular Risk Factors and Heart Failure in Older Adults from the Brazilian Far North. Healthcare. 2024;12:951. https://doi.org/10.3390/healthcare12090951
21. World Health Organization (WHO). Obesity [Internet]. 2020. Available online: https://www.who.int/health-topics/obesity (accessed on 21 November 2024).
22. Brasil. Ministério da Saúde. Orientações para avaliação de marcadores de consumo alimentar na atenção básica Brasília, DF [internet]. 2015 [citado 2024, sep. 07]. Disponible en: http://bvsms.saude.gov.br/bvs/publicacoes/marcadores_consumo_alimentar_atencao_basica.pdf
23. Louzada ML, Couto VD, Rauber F, Tramontt CR, Santos TS, Lourenço BH, et al. Food and Nutrition Surveillance System markers predict diet quality. Rev Saude Publica. 2023;57:82. https://doi.org/10.11606/s1518-8787.2023057005087
24. Lourenço BH, Guedes BM, Santos TSS. Marcadores do consumo alimentar do Sisvan: estrutura e invariância de mensuração no Brasil. Rev Saude Publica. 2023;57:52. https://doi.org/10.11606/s15188787.2023057004896
25. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Departamento de Análise Epidemiológica e Vigilância de Doenças Não Transmissíveis. Vigitel - Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados br. Brasília [internet]. 2023 [citado 2024, sep. 13]. Disponible en: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2023.pdf
26. Stopa SR, Szwarcwald CL, Oliveira MM, Gouvea ED, Vieira ML, Freitas MP, et al. National Health Survey 2019: history, methods and perspectives. Epidemiol Serv Saúde. 2020;29:e2020315. https://doi.org/10.1590/S1679-49742020000500004
27. Khodayari S, Sadeghi O, Safabakhsh M, Mozaffari-Khosravi H. Meat consumption and the risk of general and central obesity: the Shahedieh study. BMC Res Not. 2022 Nov 1;15(1):339. https://doi.org/10.1186/s13104-022-06235-5
28. Sandoval-Insausti H, Jiménez-Onsurbe M, Donat-Vargas C, Rey-García J, Banegas JR, Rodríguez-Artalejo F, Guallar-Castillón P. Ultra-processed food consumption is associated with abdominal obesity: A prospective cohort study in older adults. Nutrients. 2020;12(8):2368. https://doi.org/10.3390/nu12082368
29. Aprelini CM, Luft VC, Meléndez GV, Schmidt MI, Mill JG, Molina MD. Consumption of red and processed meat, insulin resistance, and diabetes in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Rev Panam Salud Publica. 2019;3:e40. https://doi.org/10.26633/rpsp.2019.40
30. Zhu R, Fogelholm M, Jalo E, Poppitt SD, Silvestre MP, Moller G, et al. Animal-based food choice and associations with long-term weight maintenance and metabolic health after a large and rapid weight loss: The PREVIEW study. Clin Nutr. 2022;41(4):817-28. https://doi.org/10.1016/j.clnu.2022.02.002
31. Rauber F, Chang K, Vamos EP, Louzada ML, Monteiro CA, Millett C, et al. Ultra-processed food consumption and risk of obesity: a prospective cohort study of UK Biobank. Eur J Nutr. 2021;60:2169-80. https://doi.org/10.1007/s00394-020-02367-1
32. Brasil. Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de orçamentos familiares: 2017-2018: análise do consumo alimentar pessoal no Brasil / IBGE, Coordenação de Trabalho e Rendimento [internet]. 2020[[citado 2024, sep. 02]. Disponible en: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101742
33. Ruiz E, Rodriguez, P, Valer, T, Ávil, JM, Aranceta-Bartrina, J, Gil Á, et al. Dietary Intake of Individual (Free and Intrinsic) Sugars and Food Sources in the Spanish Population: Findings from the ANIBES Study. Nutrients. 2017;9:275. https://doi.org/10.3390/nu9030275
34. Ludwig DS, Ebbeling CB. The carbohydrate-insulin model of obesity: beyond “calories in, calories out”. JAMA Intern Med. 2018; 178:1098-103. https://doi.org/10.1001/jamainternmed.2018.2933
35. Rana H, Mallet MC, Gonzalez A, Verreault MF, St-Pierre S. Free sugars consumption in Canada. Nutrients. 2021;13(5):1471. https://doi.org/10.3390/nu13051471
36. Martini D, Godos J, Bonaccio M, Vitaglione P, Grosso G. Ultra-processed foods and nutritional dietary profile: a meta-analysis of nationally representative samples. Nutrients. 2021;13(10):3390. https://doi.org/10.3390/nu13103390
37. Debras C, Chazelas E, Srour B, Kesse-Guyot E, Julia C, Zelek L, et al. Total and added sugar intakes, sugar types, and cancer risk: results from the prospective NutriNet-Santé cohort. Am J Clin Nutr. 2020;112(5):1267-79. https://doi.org/10.1093/ajcn/nqaa246
38. Sun C, Guo B, Liu X, Xiao X, Zhao X, China Multi-Ethnic Cohort (CMEC) Collaborative Group. Interviewer error within the face-to-face food frequency questionnaire in large multisite epidemiologic studies. Am J Epidemiol. 2022;191(5):921-9. https://doi.org/10.1093/aje/kwac024
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El autor o los autores conserva(n) los derechos morales y cede(n) los derechos patrimoniales que corresponderán a la Universidad de Antioquia, para publicarlo, distribuir copias electrónicas, incluirlas en servicios de indización, directorios o bases de datos nacionales e internacionales en Acceso Abierto, bajo la licencia Creative Commons Atribución-No Comercial-Compartir Igual 4.0 Internacional Comercial (CC BY-NC-SA) la cual permite a otros distribuir, remezclar, retocar y crear a partir de la obra de modo no comercial, siempre y cuando se dé crédito respectivo y licencien las nuevas creaciones bajo las mismas condiciones.