Impact evaluation of welfare actions over a community in Colombia, using a data correlated model

Authors

  • Marisol Valencia C. National University of Colombia
  • Juan C. Salazar U. National University of Colombia

DOI:

https://doi.org/10.17533/udea.rfnsp.1847

Keywords:

linear mixed models, mental health, scores for impact evaluation

Abstract

The impact evaluation of a communitarian program sometimes is based on statistical techniques such as linear regression models analysis when the goal is usually to quantify its effects on both social and welfare characteristics of a community. This involves the study of mental health and social variables which effects could not be easily quantified due to the presence of correlation structures among the observations within a particular subject. For this reason it is advisable to use linear mixed models to this kind of study. Objective: To calculate the impact of the effects produced by actions of the Instituto de Deportes y Recreación de Medellín (INDER) on the participant population. Methodology: from a sample collected by INDER back in 2007, about participants and no participants of its programs, generalized linear models were estimated to explain the behavior of both social and psychological variables. Then, by using a logistic regression model a matching procedure was performed to identify the subjects and their repeated measures that will serve as inputs to measure the impact of the intervention of the welfare activities on the community by means of a linear mixed model. Results: The linear mixed estimation process identified important interaction variables that favor the intervention welfare actions. Conclusions: from the participation in the INDER activities, an improvement of variables related with social capital was found.

|Abstract
= 112 veces | PDF (ESPAÑOL (ESPAÑA))
= 86 veces|

Downloads

Download data is not yet available.

Author Biographies

Marisol Valencia C., National University of Colombia

Industrial Engineer, Specialist and Master in Statistics, National University of Colombia. Medellín, Colombia.

Juan C. Salazar U., National University of Colombia

Ph.D. in statistics, University of Kentucky. Professor, National University of Colombia, Medellín, Colombia.

References

(1). Vanclay F. Principios internacionales de la evaluación de impacto social. Serie de publicaciones oficiales No. 2. 2003.

(2). Programa Familias en Acción: Condiciones iniciales de losbeneficiarios e impactos preliminares. Banco Mundial. Departamento Nacional de Planeación [Internet] 2004 [acceso junio 12 de 2008]. Disponible en: http://www.dnp.gov.co/archivos/documentos/DEPP_Evaluacion_Impacto_RAS/Familias_en_accion_web.pdf.

(3). Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrics 1983;70(1):41-56. DOI: https://doi.org/10.2307/2335942

(4). Rico C. La generación de Capital Social a partir de actividades deportivas y recreativas como alternativa para promover el desarrollo integral del país. Medellín:i n d e r; 2006.

(5). Correa E. González C. Las expresiones motrices como alternati-va para la reconstrucción de tejido social. Experiencia evaluativa de la intervención social en la Escuela de Iniciación y Formación deportiva Santo Domingo Savio. Revista Educación Física y DeRevista Educación Física y De-porte 2003;22(1):143-147.

(6). Ravillion M. Evaluating Anti-Poverty Programs. World Bank Policy Research Working Paper 3625 [Ìnternet] 2005 [acceso julio 20 de 2008]. Disponible en: http://econ.worldbank.org/g. DOI: https://doi.org/10.1596/1813-9450-3625

(7). Shapiro J. Compensatory Education for Disadvantaged Mexican Students: An Impact Evaluation Using Propensity Score Mat-ching. World Bank Policy Research Working Paper 3334. 2004. DOI: https://doi.org/10.1596/1813-9450-3334

(8). Agresti A. Categorical Data Analysis. New York: Wiley Inters-cience; 2002. DOI: https://doi.org/10.1002/0471249688

(9). Programa R 2.9.0. [Internet] [acceso 15 de marzo de 2009]. Disponible en: www.cran.r-project.org.

(10). Littell RC, Milliken GA. s a sfor mixed models. 2ª ed. SAS institute Inc; 2006.

(11). Laird NM, Ware J. Random effects models for longitudinal data. Biometrics 1982;38:963- 974.

(12). McCulloch CE, Searle SR. Generalized, Linear and Mixed Models. Wiley Series in Probability and Statistics 2000.p. 156. DOI: https://doi.org/10.1002/0471722073

(13). Laird NM, Ware JH. Random effects models for longitudinal data. Biometrics 1982;38:963-974. DOI: https://doi.org/10.2307/2529876

Published

2010-05-27

How to Cite

1.
Valencia C. M, Salazar U. JC. Impact evaluation of welfare actions over a community in Colombia, using a data correlated model. Rev. Fac. Nac. Salud Pública [Internet]. 2010 May 27 [cited 2025 Jan. 22];28(1):64-72. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/1847

Issue

Section

Research